October  2014, 19(8): 2501-2519. doi: 10.3934/dcdsb.2014.19.2501

Two-stage model of carcinogenic mutations with the influence of delays

1. 

University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, Banacha 2, 02-097 Warsaw

2. 

Warsaw University of Life Science, Faculty of Applied Informatics and Mathematics, Nowoursynowska 159, 02-776 Warsaw, Poland

Received  November 2013 Revised  April 2014 Published  August 2014

In the paper we make an attempt to study the influence of time delays combined with diffusion on the dynamics of two-stage carcinogenic mutations model. Included delays represent time needed for transformation from one type of cells to the other one. In the presented analysis we focus on possible stability switches due to increasing delays and diffusion driven instability. It occurs that diffusion has no significant impact on asymptotic behaviour of the model solutions, while one of the present delays has destabilising effect in most of cases we study. Analytical results are illustrated by numerical examples of the model dynamics.
Citation: Urszula Foryś, Beata Zduniak. Two-stage model of carcinogenic mutations with the influence of delays. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2501-2519. doi: 10.3934/dcdsb.2014.19.2501
References:
[1]

R. Ahangar and X. B. Lin, Multistage evolutionary model for carcinogenesis mutations, Electron. J. Diff. Eqns., 10 (2003), 33-53.

[2]

P. K. Brazhnik and J. J. Tyson, On travelling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (1999), 371-391. doi: 10.1137/S0036139997325497.

[3]

C. M. Beauséjour, A. Krtolica, F. Galimi, M. Narita, S.W. Lowe, P. Yaswen and J. Campisi, Reversal of human cellular senescence: roles of the p53 and p16 pathways, EMBO J, 22 (2003), 4212-4222.

[4]

K. Camphausen, M. A. Moses, C. Ménard, M. Sproull, W. Beecken, J. Folkman and M. S. O'Reilly, Radiation abscopal antitumor effect is mediated through p53, Cancer Res., 63 (2003), 1990-1993.

[5]

Z. Chen, L. C. Trotman, D. Shaffer, H. Lin, Z. A. Dotan, M. Niki, J. A. Koutcher, H. I. Scher, T. Ludwig and W. Gerald, Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis, Nature, 436 (2005), 725-730. doi: 10.1038/nature03918.

[6]

K. L. Cooke and P. van den Driessche, On Zeroes of Some Transcendental Equations, Funkcj. Ekvacioj, 29 (1986), 77-90.

[7]

J. Coppé, C. K. Patil, F. Rodier, Y. Sun, D. P. Muñoz, J. Goldstein, P. S. Nelson, P. Desprez and J. Campisi, Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6 (2008) e301. doi: 10.1371/journal.pbio.0060301.

[8]

E. R. Fearon and B. Vogelstein, A genetic model for colorectal tumorigenesis, Cell, 61 (1990), 759-767. doi: 10.1016/0092-8674(90)90186-I.

[9]

U. Foryś, Biological delay systems and the Mikhailov criterion of stability, J. Biol. Sys., 12 (2004), 45-60.

[10]

U. Foryś, Stability analysis and comparison of the models for carcinogenesis mutations in the case of two stages of mutations, J. Appl. Anal., 11 (2005), 200-281. doi: 10.1515/JAA.2005.283.

[11]

U. Foryś, Multi-dimensional Lotka-{Volterra} system for carcinogenesis mutations, Math. Meth. Appl. Sci., 32 (2009), 2287-2308. doi: 10.1002/mma.1137.

[12]

U. Foryś, Influence of time delays on a two-stage mutations model, in Proceedings of the XIX National Conference Applications of Mathematics in Biology and Medicine, (2013), Gdańsk University of Technology.

[13]

J. S. Fridman and S. W. Lowe, Control of apoptosis by p53, Oncogene, 22 (2003), 9030-9040. doi: 10.1038/sj.onc.1207116.

[14]

M. S. Greenblatt, W. P. Bennett, M. Hollstein and C. C. Harris, Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis, Cancer Res., 54 (1994), 4855-4878.

[15]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[16]

B. Hat, K. Puszyński and T. Lipniacki, Exploring mechanisms of oscillations in p53 and nuclear factor-$\kappa$B systems, Systems Biology, IET, 3 (2009), 342-355. doi: 10.1049/iet-syb.2008.0156.

[17]

E. Michalak, A. Villunger, M. Erlacher and A. Strasser, Death squads enlisted by the tumour suppressor p53, Biochem. Bioph. Res. Co., 331 (2005), 786-798. doi: 10.1016/j.bbrc.2005.03.183.

[18]

M. J. Piotrowska, U. Foryś, M. Bodnar and J. Poleszczuk, A simple model of carcinogenic mutations with time delay and diffusion, Math. Biosci. Eng., 10 (2013), 861-872. doi: 10.3934/mbe.2013.10.861.

[19]

K. Puszyński, B. Hat and T. Lipniacki, Oscillations and bistability in the stochastic model of p53 regulation, Journal of Theoretical Biology, 254 (2008), 452-465.

[20]

L. D. Wood, D. W. Parsons, S. Jones, J. Lin, T. Sjöblom, R. J. Leary, D. Shen, S. M. Boca, T. Barber, J. Ptak, N. Silliman, S. Szabo, Z. Dezso, V. Ustyanksky, T. Nikolskaya, Y. Nikolsky, R. Karchin, P. A. Wilson, J. S. Kaminker, Z. Zhang, R. Croshaw, J. Willis, D. Dawson, M. Shipitsin, J. K. Willson, S. Sukumar, K. Polyak, B. H. Park, C. L. Pethiyagoda, P. V. Pant, D. G. Ballinger, A. B. Sparks, J. Hartigan, D. R. Smith, E. Suh, N. Papadopoulos, P. Buckhaults, S. D. Markowitz, G. Parmigiani, K. W. Kinzler, V. E. Velculescu and B. Vogelstein, The genomic landscapes of human breast and colorectal cancers, Science, 318 (2007), 1108-1113. doi: 10.1126/science.1145720.

show all references

References:
[1]

R. Ahangar and X. B. Lin, Multistage evolutionary model for carcinogenesis mutations, Electron. J. Diff. Eqns., 10 (2003), 33-53.

[2]

P. K. Brazhnik and J. J. Tyson, On travelling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (1999), 371-391. doi: 10.1137/S0036139997325497.

[3]

C. M. Beauséjour, A. Krtolica, F. Galimi, M. Narita, S.W. Lowe, P. Yaswen and J. Campisi, Reversal of human cellular senescence: roles of the p53 and p16 pathways, EMBO J, 22 (2003), 4212-4222.

[4]

K. Camphausen, M. A. Moses, C. Ménard, M. Sproull, W. Beecken, J. Folkman and M. S. O'Reilly, Radiation abscopal antitumor effect is mediated through p53, Cancer Res., 63 (2003), 1990-1993.

[5]

Z. Chen, L. C. Trotman, D. Shaffer, H. Lin, Z. A. Dotan, M. Niki, J. A. Koutcher, H. I. Scher, T. Ludwig and W. Gerald, Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis, Nature, 436 (2005), 725-730. doi: 10.1038/nature03918.

[6]

K. L. Cooke and P. van den Driessche, On Zeroes of Some Transcendental Equations, Funkcj. Ekvacioj, 29 (1986), 77-90.

[7]

J. Coppé, C. K. Patil, F. Rodier, Y. Sun, D. P. Muñoz, J. Goldstein, P. S. Nelson, P. Desprez and J. Campisi, Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6 (2008) e301. doi: 10.1371/journal.pbio.0060301.

[8]

E. R. Fearon and B. Vogelstein, A genetic model for colorectal tumorigenesis, Cell, 61 (1990), 759-767. doi: 10.1016/0092-8674(90)90186-I.

[9]

U. Foryś, Biological delay systems and the Mikhailov criterion of stability, J. Biol. Sys., 12 (2004), 45-60.

[10]

U. Foryś, Stability analysis and comparison of the models for carcinogenesis mutations in the case of two stages of mutations, J. Appl. Anal., 11 (2005), 200-281. doi: 10.1515/JAA.2005.283.

[11]

U. Foryś, Multi-dimensional Lotka-{Volterra} system for carcinogenesis mutations, Math. Meth. Appl. Sci., 32 (2009), 2287-2308. doi: 10.1002/mma.1137.

[12]

U. Foryś, Influence of time delays on a two-stage mutations model, in Proceedings of the XIX National Conference Applications of Mathematics in Biology and Medicine, (2013), Gdańsk University of Technology.

[13]

J. S. Fridman and S. W. Lowe, Control of apoptosis by p53, Oncogene, 22 (2003), 9030-9040. doi: 10.1038/sj.onc.1207116.

[14]

M. S. Greenblatt, W. P. Bennett, M. Hollstein and C. C. Harris, Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis, Cancer Res., 54 (1994), 4855-4878.

[15]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[16]

B. Hat, K. Puszyński and T. Lipniacki, Exploring mechanisms of oscillations in p53 and nuclear factor-$\kappa$B systems, Systems Biology, IET, 3 (2009), 342-355. doi: 10.1049/iet-syb.2008.0156.

[17]

E. Michalak, A. Villunger, M. Erlacher and A. Strasser, Death squads enlisted by the tumour suppressor p53, Biochem. Bioph. Res. Co., 331 (2005), 786-798. doi: 10.1016/j.bbrc.2005.03.183.

[18]

M. J. Piotrowska, U. Foryś, M. Bodnar and J. Poleszczuk, A simple model of carcinogenic mutations with time delay and diffusion, Math. Biosci. Eng., 10 (2013), 861-872. doi: 10.3934/mbe.2013.10.861.

[19]

K. Puszyński, B. Hat and T. Lipniacki, Oscillations and bistability in the stochastic model of p53 regulation, Journal of Theoretical Biology, 254 (2008), 452-465.

[20]

L. D. Wood, D. W. Parsons, S. Jones, J. Lin, T. Sjöblom, R. J. Leary, D. Shen, S. M. Boca, T. Barber, J. Ptak, N. Silliman, S. Szabo, Z. Dezso, V. Ustyanksky, T. Nikolskaya, Y. Nikolsky, R. Karchin, P. A. Wilson, J. S. Kaminker, Z. Zhang, R. Croshaw, J. Willis, D. Dawson, M. Shipitsin, J. K. Willson, S. Sukumar, K. Polyak, B. H. Park, C. L. Pethiyagoda, P. V. Pant, D. G. Ballinger, A. B. Sparks, J. Hartigan, D. R. Smith, E. Suh, N. Papadopoulos, P. Buckhaults, S. D. Markowitz, G. Parmigiani, K. W. Kinzler, V. E. Velculescu and B. Vogelstein, The genomic landscapes of human breast and colorectal cancers, Science, 318 (2007), 1108-1113. doi: 10.1126/science.1145720.

[1]

Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861

[2]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[3]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[4]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[5]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[6]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[7]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[8]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[9]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[10]

Elena Braverman, Sergey Zhukovskiy. Absolute and delay-dependent stability of equations with a distributed delay. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2041-2061. doi: 10.3934/dcds.2012.32.2041

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003

[13]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005

[14]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[15]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[16]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[17]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[18]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[19]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[20]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]