Citation: |
[1] |
M. Anguelova and B. Wennberg, State elimination and identifiability of the delay parameter for nonlinear time-delay systems, Automatica, 44 (2008), 1373-1378.doi: 10.1016/j.automatica.2007.10.013. |
[2] |
L. Belkoura, J. P. Richard and M. Fliess, Parameters estimation of systems with delayed and structured entries, Automatica, 45 (2009), 1117-1125.doi: 10.1016/j.automatica.2008.12.026. |
[3] |
D. G. Cacuci, Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach, Journal Mathematical Physics, 22 (1981), 2794-2802.doi: 10.1063/1.525186. |
[4] |
J. B. Cruz (Ed.), Feedback Systems, McGraw-Hill, New York, 1972. |
[5] |
J. B. Cruz (Ed.), System Sensitivity Analysis, Benchmark Papers in Electrical Engineering and Computer Science, Dowden, Hutchinson and Ross, Inc., Stroudsburg, 1973. |
[6] |
K. Fujarewicz, M. Kimmel, T. Lipniacki and A. Swierniak, Adjoint systems for models of cell signalling pathways and their application to parametr fitting, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (2007), 322-335. |
[7] |
K. Fujarewicz and A. Galuszka, Generalized Backpropagation Through Time for Continuous Time Neural Networks and Discrete Time Measurements. in Artificial Intelligence and Soft Computing - ICAISC 2004 (eds. L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh), Lecture Notes in Computer Science, 3070, Springer-Verlag, Berlin, 2004, 190-196. |
[8] |
K. Fujarewicz, M. Kimmel and A. Swierniak, On fitting of mathematical models of cell signaling pathways using adjoint systems, Mathematical Biosciences and Engineering, 2 (2005), 527-534.doi: 10.3934/mbe.2005.2.527. |
[9] |
K. Fujarewicz, Identification and suboptimal control of heat exchanger using generalized back propagation through time, Archives of Control Sciences, 10 (2000), 167-183. |
[10] |
F. Giri and E. W.Bai, eds, Block-oriented Nonlinear System Identification, Springer, 2010. |
[11] |
M. Liu, Q. G. Wang, B. Huang and C. C. Hang, Improved identification of continuous-time delay processes from piecewise step tests, Journal of Process Control, 17 (2007), 51-57. |
[12] |
R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55 (2010), 2113-2119.doi: 10.1109/TAC.2010.2050710. |
[13] |
S. Mason, Feedback theory-Some properties of signal-flow graphs, Proc. IRE, 41 (1953), 1144-1156. |
[14] |
B. Ni, D. Xiao and S. L. Shah, Time delay estimation for MIMO dynamical systems with time-frequency domain analysis, Journal of Process Control, 20 (2010), 83-94. |
[15] |
B. Rakshit, A. R. Chowdhury and P. Saha, Parameter estimation of a delay dynamical system using synchronization inpresence of noise, Chaos, Solitons and Fractals, 32 (2007), 1278-1284. |
[16] |
J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694.doi: 10.1016/S0005-1098(03)00167-5. |
[17] |
F. A. Rihan, Sensitivity analysis for dynamic systems with time-lags, Journal of Computational and Applied Mathematics, 151 (2003), 445-462.doi: 10.1016/S0377-0427(02)00659-3. |
[18] |
T. Swameye, G. Muller, J. Timmer, O. Sandra and U. Klingmuller, Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling, PNAS, 100 (2003), 1028-1033. |
[19] |
Y. Tang and X. Guan, Parameter estimation of chaotic system with time-delay: A differential evolution approach, Chaos, Solitons and Fractals, 42 (2009), 3132-3139. |
[20] |
Y. Tang and X. Guan, Parameter estimation for time-delay chaotic systems by particle swarm optimization, Chaos, Solitons and Fractals, 40 (2009), 1391-1398. |