\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A global implicit function theorem and its applications to functional equations

Abstract Related Papers Cited by
  • The main result of the paper is a global implicit function theorem. In the proof of this theorem, we use a variational approach and apply Mountain Pass Theorem. An assumption guarantying existence of an implicit function on the whole space is a Palais-Smale condition. Some applications to differential and integro-differential equations are given.
    Mathematics Subject Classification: Primary: 26B10, 47J07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [2]

    M. Cristea, A note on global implicit function theorem, J. Inequal. Pure and Appl., 8 (2007), 15 pp.

    [3]

    D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Advanced Nonlinear Studies, 12 (2012), 89-100.

    [4]

    A. D. Ioffe and V. M. Tikhomirov, Theory of Extremum Problems, North-Holland, 1979.

    [5]

    P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc., Providence, 1986.

    [6]

    W. C. Rheinboldt, Local mapping relations and global implicit function theorems, Trans. Amer. Math. Soc., 138 (1969), 183-198.doi: 10.1090/S0002-9947-1969-0240644-0.

    [7]

    M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.doi: 10.1007/978-1-4612-4146-1.

    [8]

    W. Zhang and S. S. Ge, A Global Implicit Function Theorem without initial point and its applications to control of non-affine systems of high dimensions, J. Math. Anal. Appl, 313 (2006), 251-261.doi: 10.1016/j.jmaa.2005.08.072.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(743) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return