October  2014, 19(8): 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

A global implicit function theorem and its applications to functional equations

1. 

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland

Received  October 2013 Revised  March 2014 Published  August 2014

The main result of the paper is a global implicit function theorem. In the proof of this theorem, we use a variational approach and apply Mountain Pass Theorem. An assumption guarantying existence of an implicit function on the whole space is a Palais-Smale condition. Some applications to differential and integro-differential equations are given.
Citation: Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

M. Cristea, A note on global implicit function theorem,, J. Inequal. Pure and Appl., 8 (2007).   Google Scholar

[3]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces,, Advanced Nonlinear Studies, 12 (2012), 89.   Google Scholar

[4]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremum Problems,, North-Holland, (1979).   Google Scholar

[5]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, Amer. Math. Soc., (1986).   Google Scholar

[6]

W. C. Rheinboldt, Local mapping relations and global implicit function theorems,, Trans. Amer. Math. Soc., 138 (1969), 183.  doi: 10.1090/S0002-9947-1969-0240644-0.  Google Scholar

[7]

M. Willem, Minimax Theorems,, Birkhauser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[8]

W. Zhang and S. S. Ge, A Global Implicit Function Theorem without initial point and its applications to control of non-affine systems of high dimensions,, J. Math. Anal. Appl, 313 (2006), 251.  doi: 10.1016/j.jmaa.2005.08.072.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

M. Cristea, A note on global implicit function theorem,, J. Inequal. Pure and Appl., 8 (2007).   Google Scholar

[3]

D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces,, Advanced Nonlinear Studies, 12 (2012), 89.   Google Scholar

[4]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremum Problems,, North-Holland, (1979).   Google Scholar

[5]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, Amer. Math. Soc., (1986).   Google Scholar

[6]

W. C. Rheinboldt, Local mapping relations and global implicit function theorems,, Trans. Amer. Math. Soc., 138 (1969), 183.  doi: 10.1090/S0002-9947-1969-0240644-0.  Google Scholar

[7]

M. Willem, Minimax Theorems,, Birkhauser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[8]

W. Zhang and S. S. Ge, A Global Implicit Function Theorem without initial point and its applications to control of non-affine systems of high dimensions,, J. Math. Anal. Appl, 313 (2006), 251.  doi: 10.1016/j.jmaa.2005.08.072.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]