October  2014, 19(8): 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points

1. 

Department of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland, Poland

Received  November 2013 Revised  May 2014 Published  August 2014

In the paper we consider a Dirichlet problem for a fractional differential equation. The main goal is to prove an existence and continuous dependence of solution on functional parameter $u$ for the above problem. To prove it we use a variational method.
Citation: Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557
References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990.  Google Scholar

[2]

D. Bors, A. Skowron and S. Walczak, Optimal control and stability of elliptic systems with integral cost functional, Systems Science, 33 (2007), 13-26.  Google Scholar

[3]

D. Bors and S. Walczak, Nonlinear elliptic systems with variable boundary data, Nonlinear Analysis: Theory, Methods and Applications, 52 (2003), 1347-1364. doi: 10.1016/S0362-546X(02)00179-7.  Google Scholar

[4]

L. Bourdin, Existence of a weak solution for fractional Euler-Lagrange equations, Journal of Mathematical Analysis and Applications, 399 (2013), 239-251. doi: 10.1016/j.jmaa.2012.10.008.  Google Scholar

[5]

L. Debnath, Recent applications of fractional calculus to science and engineering, International Journal of Mathematics and Mathematical Sciences, 54 (2003), 3413-3442. doi: 10.1155/S0161171203301486.  Google Scholar

[6]

D. Idczak, Fractional du Bois-Reymond Lemma of Order $\alpha\in(1/2,1)$, Proceedings of the 7th International Workshop on Multidimensional (nD) Systems (nDs), 2011, Poitiers, France. Google Scholar

[7]

R. Kamocki and M. Majewski, On a fractional Dirichlet problem, Proceedings of 17th International Conference Methods and Models in Automation and Robotics (MMAR), (2012), 60-63. doi: 10.1109/MMAR.2012.6347911.  Google Scholar

[8]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[9]

L. Nirenberg, Topics in Nonlinear Functional Analysis, New York University - Courant Institute of Mathematical Sciences - AMS, New York, 1974.  Google Scholar

[10]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, California, 1999.  Google Scholar

[11]

S. Walczak, On the continuous dependance on parameters of solutions of the Dirichlet problem: Part I. Coercive case; Part II. The case of saddle points, Bulletin de la Classe des Sciences de l'Académie Royale de Beligique, 6 (1995), 247-261.  Google Scholar

show all references

References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990.  Google Scholar

[2]

D. Bors, A. Skowron and S. Walczak, Optimal control and stability of elliptic systems with integral cost functional, Systems Science, 33 (2007), 13-26.  Google Scholar

[3]

D. Bors and S. Walczak, Nonlinear elliptic systems with variable boundary data, Nonlinear Analysis: Theory, Methods and Applications, 52 (2003), 1347-1364. doi: 10.1016/S0362-546X(02)00179-7.  Google Scholar

[4]

L. Bourdin, Existence of a weak solution for fractional Euler-Lagrange equations, Journal of Mathematical Analysis and Applications, 399 (2013), 239-251. doi: 10.1016/j.jmaa.2012.10.008.  Google Scholar

[5]

L. Debnath, Recent applications of fractional calculus to science and engineering, International Journal of Mathematics and Mathematical Sciences, 54 (2003), 3413-3442. doi: 10.1155/S0161171203301486.  Google Scholar

[6]

D. Idczak, Fractional du Bois-Reymond Lemma of Order $\alpha\in(1/2,1)$, Proceedings of the 7th International Workshop on Multidimensional (nD) Systems (nDs), 2011, Poitiers, France. Google Scholar

[7]

R. Kamocki and M. Majewski, On a fractional Dirichlet problem, Proceedings of 17th International Conference Methods and Models in Automation and Robotics (MMAR), (2012), 60-63. doi: 10.1109/MMAR.2012.6347911.  Google Scholar

[8]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[9]

L. Nirenberg, Topics in Nonlinear Functional Analysis, New York University - Courant Institute of Mathematical Sciences - AMS, New York, 1974.  Google Scholar

[10]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, California, 1999.  Google Scholar

[11]

S. Walczak, On the continuous dependance on parameters of solutions of the Dirichlet problem: Part I. Coercive case; Part II. The case of saddle points, Bulletin de la Classe des Sciences de l'Académie Royale de Beligique, 6 (1995), 247-261.  Google Scholar

[1]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[2]

Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021007

[3]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

María Guadalupe Morales, Zuzana Došlá, Francisco J. Mendoza. Riemann-Liouville derivative over the space of integrable distributions. Electronic Research Archive, 2020, 28 (2) : 567-587. doi: 10.3934/era.2020030

[6]

Paul Eloe, Jaganmohan Jonnalagadda. Quasilinearization applied to boundary value problems at resonance for Riemann-Liouville fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2719-2734. doi: 10.3934/dcdss.2020220

[7]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[8]

Pablo Amster, Colin Rogers. On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3277-3292. doi: 10.3934/dcds.2015.35.3277

[9]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial & Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[10]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[11]

Nguyen Minh Tung, Mai Van Duy. Painlevé-Kuratowski convergences of the solution sets for vector optimization problems with free disposal sets. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021066

[12]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[13]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[14]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[15]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[16]

JinMyong An, JinMyong Kim, KyuSong Chae. Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021221

[17]

Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171

[18]

Qian Liu, Xinmin Yang, Heung Wing Joseph Lee. On saddle points of a class of augmented lagrangian functions. Journal of Industrial & Management Optimization, 2007, 3 (4) : 693-700. doi: 10.3934/jimo.2007.3.693

[19]

Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2018, 17 (1) : 127-142. doi: 10.3934/cpaa.2018008

[20]

Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]