October  2014, 19(8): 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland

Received  December 2013 Revised  March 2014 Published  August 2014

We consider a differential inclusion which is somehow analogous to the classical Duffing's equation with Dirichlet boundary condition. We prove the existence of a solution using two-steps approach. Firstly we consider an auxiliary problem where we substitute $h := \frac{dx} {dt} \in L^2(0,1)$. Next, using the method of pseudomonotone and coercive operators, we prove the existence of a solution to the auxiliary problem. Finally we prove that under suitable assumptions, an iterative scheme converges to the solution of our inclusion, which appears to be unique.
Citation: Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569
References:
[1]

P. Amster, Nonlinearities in a second order ODE,, Electron. J. Differ. Equ., 6 (2001), 13.   Google Scholar

[2]

P. Amster and M. C. Mariani, A second order ODE with a nonlinear final condition,, Electron. J. Differ. Equ., 75 (2001), 1.   Google Scholar

[3]

J. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory,, Springer-Verlag, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[4]

M. Barboteu, K. Bartosz, P. Kalita and A. Ramadan, Analysis of a contact problem with normal compliance, Finite penetration and nonmonotone slip dependent friction,, Communications in Contemporary Mathematics, 16 (2014).  doi: 10.1142/S0219199713500168.  Google Scholar

[5]

M. Galewski, On the Dirichlet problem for a Duffing type equation,, E. J. Qualitative Theory of Diff. Equ., 15 (2011), 1.   Google Scholar

[6]

P. Holmes, A nonlinear oscillator with a strange attractor,, Philosophical Transactions of the Royal Society A, 292 (1979), 419.  doi: 10.1098/rsta.1979.0068.  Google Scholar

[7]

P. Holmes and D. Rand, Phase portraits and bifurcations of the non-linear oscillator $x'' +(\alpha+\gamma x^2 )x'+\beta x+\delta x^3 =0$,, International Journal of Non-linear Mechanics, 15 (1980), 449.   Google Scholar

[8]

P. Holmes and D. Whitley, On the attracting set for Duffing's equation, II. A geometrical model for moderate force and damping,, Physica D, 7 (1983), 111.  doi: 10.1016/0167-2789(83)90121-5.  Google Scholar

[9]

P. J. Holmes and D. A. Rand, The bifurcations of Duffing's equation: An application of catastrophe theory,, Journal of Sound and Vibration, 44 (1976), 237.  doi: 10.1016/0022-460X(76)90771-9.  Google Scholar

[10]

W. Huang and Z. Shen, On a two-point boundary value problem of Duffing type equation with Dirichlet conditions., Appl. Math., 14 (1999), 131.  doi: 10.1007/s11766-999-0018-x.  Google Scholar

[11]

J. Mawhin, The forced pendulum: A paradigm for nonlinear analysis and dynamical systems,, Exposition. Math., 6 (1988), 271.   Google Scholar

[12]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problem,, Springer, (2013).  doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[13]

F. C. Moon and P. J. Holmes, A magnetoelastic strange attractor,, Journal of Sound and Vibration, 65 (1979), 275.  doi: 10.1016/0022-460X(79)90520-0.  Google Scholar

[14]

F. C. Moon and P. J. Holmes, Addendum: A magnetoelastic strange attractor,, Journal of Sound and Vibration, 69 (1980).   Google Scholar

[15]

P. Tomiczek, Remark on Duffing equation with Dirichlet boundary condition,, Electron. J. Differ. Equ., 81 (2007), 1.   Google Scholar

show all references

References:
[1]

P. Amster, Nonlinearities in a second order ODE,, Electron. J. Differ. Equ., 6 (2001), 13.   Google Scholar

[2]

P. Amster and M. C. Mariani, A second order ODE with a nonlinear final condition,, Electron. J. Differ. Equ., 75 (2001), 1.   Google Scholar

[3]

J. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory,, Springer-Verlag, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[4]

M. Barboteu, K. Bartosz, P. Kalita and A. Ramadan, Analysis of a contact problem with normal compliance, Finite penetration and nonmonotone slip dependent friction,, Communications in Contemporary Mathematics, 16 (2014).  doi: 10.1142/S0219199713500168.  Google Scholar

[5]

M. Galewski, On the Dirichlet problem for a Duffing type equation,, E. J. Qualitative Theory of Diff. Equ., 15 (2011), 1.   Google Scholar

[6]

P. Holmes, A nonlinear oscillator with a strange attractor,, Philosophical Transactions of the Royal Society A, 292 (1979), 419.  doi: 10.1098/rsta.1979.0068.  Google Scholar

[7]

P. Holmes and D. Rand, Phase portraits and bifurcations of the non-linear oscillator $x'' +(\alpha+\gamma x^2 )x'+\beta x+\delta x^3 =0$,, International Journal of Non-linear Mechanics, 15 (1980), 449.   Google Scholar

[8]

P. Holmes and D. Whitley, On the attracting set for Duffing's equation, II. A geometrical model for moderate force and damping,, Physica D, 7 (1983), 111.  doi: 10.1016/0167-2789(83)90121-5.  Google Scholar

[9]

P. J. Holmes and D. A. Rand, The bifurcations of Duffing's equation: An application of catastrophe theory,, Journal of Sound and Vibration, 44 (1976), 237.  doi: 10.1016/0022-460X(76)90771-9.  Google Scholar

[10]

W. Huang and Z. Shen, On a two-point boundary value problem of Duffing type equation with Dirichlet conditions., Appl. Math., 14 (1999), 131.  doi: 10.1007/s11766-999-0018-x.  Google Scholar

[11]

J. Mawhin, The forced pendulum: A paradigm for nonlinear analysis and dynamical systems,, Exposition. Math., 6 (1988), 271.   Google Scholar

[12]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problem,, Springer, (2013).  doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[13]

F. C. Moon and P. J. Holmes, A magnetoelastic strange attractor,, Journal of Sound and Vibration, 65 (1979), 275.  doi: 10.1016/0022-460X(79)90520-0.  Google Scholar

[14]

F. C. Moon and P. J. Holmes, Addendum: A magnetoelastic strange attractor,, Journal of Sound and Vibration, 69 (1980).   Google Scholar

[15]

P. Tomiczek, Remark on Duffing equation with Dirichlet boundary condition,, Electron. J. Differ. Equ., 81 (2007), 1.   Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[10]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]