October  2014, 19(8): 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland

Received  December 2013 Revised  March 2014 Published  August 2014

We consider a differential inclusion which is somehow analogous to the classical Duffing's equation with Dirichlet boundary condition. We prove the existence of a solution using two-steps approach. Firstly we consider an auxiliary problem where we substitute $h := \frac{dx} {dt} \in L^2(0,1)$. Next, using the method of pseudomonotone and coercive operators, we prove the existence of a solution to the auxiliary problem. Finally we prove that under suitable assumptions, an iterative scheme converges to the solution of our inclusion, which appears to be unique.
Citation: Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569
References:
[1]

P. Amster, Nonlinearities in a second order ODE,, Electron. J. Differ. Equ., 6 (2001), 13.

[2]

P. Amster and M. C. Mariani, A second order ODE with a nonlinear final condition,, Electron. J. Differ. Equ., 75 (2001), 1.

[3]

J. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-69512-4.

[4]

M. Barboteu, K. Bartosz, P. Kalita and A. Ramadan, Analysis of a contact problem with normal compliance, Finite penetration and nonmonotone slip dependent friction,, Communications in Contemporary Mathematics, 16 (2014). doi: 10.1142/S0219199713500168.

[5]

M. Galewski, On the Dirichlet problem for a Duffing type equation,, E. J. Qualitative Theory of Diff. Equ., 15 (2011), 1.

[6]

P. Holmes, A nonlinear oscillator with a strange attractor,, Philosophical Transactions of the Royal Society A, 292 (1979), 419. doi: 10.1098/rsta.1979.0068.

[7]

P. Holmes and D. Rand, Phase portraits and bifurcations of the non-linear oscillator $x'' +(\alpha+\gamma x^2 )x'+\beta x+\delta x^3 =0$,, International Journal of Non-linear Mechanics, 15 (1980), 449.

[8]

P. Holmes and D. Whitley, On the attracting set for Duffing's equation, II. A geometrical model for moderate force and damping,, Physica D, 7 (1983), 111. doi: 10.1016/0167-2789(83)90121-5.

[9]

P. J. Holmes and D. A. Rand, The bifurcations of Duffing's equation: An application of catastrophe theory,, Journal of Sound and Vibration, 44 (1976), 237. doi: 10.1016/0022-460X(76)90771-9.

[10]

W. Huang and Z. Shen, On a two-point boundary value problem of Duffing type equation with Dirichlet conditions., Appl. Math., 14 (1999), 131. doi: 10.1007/s11766-999-0018-x.

[11]

J. Mawhin, The forced pendulum: A paradigm for nonlinear analysis and dynamical systems,, Exposition. Math., 6 (1988), 271.

[12]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problem,, Springer, (2013). doi: 10.1007/978-1-4614-4232-5.

[13]

F. C. Moon and P. J. Holmes, A magnetoelastic strange attractor,, Journal of Sound and Vibration, 65 (1979), 275. doi: 10.1016/0022-460X(79)90520-0.

[14]

F. C. Moon and P. J. Holmes, Addendum: A magnetoelastic strange attractor,, Journal of Sound and Vibration, 69 (1980).

[15]

P. Tomiczek, Remark on Duffing equation with Dirichlet boundary condition,, Electron. J. Differ. Equ., 81 (2007), 1.

show all references

References:
[1]

P. Amster, Nonlinearities in a second order ODE,, Electron. J. Differ. Equ., 6 (2001), 13.

[2]

P. Amster and M. C. Mariani, A second order ODE with a nonlinear final condition,, Electron. J. Differ. Equ., 75 (2001), 1.

[3]

J. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-69512-4.

[4]

M. Barboteu, K. Bartosz, P. Kalita and A. Ramadan, Analysis of a contact problem with normal compliance, Finite penetration and nonmonotone slip dependent friction,, Communications in Contemporary Mathematics, 16 (2014). doi: 10.1142/S0219199713500168.

[5]

M. Galewski, On the Dirichlet problem for a Duffing type equation,, E. J. Qualitative Theory of Diff. Equ., 15 (2011), 1.

[6]

P. Holmes, A nonlinear oscillator with a strange attractor,, Philosophical Transactions of the Royal Society A, 292 (1979), 419. doi: 10.1098/rsta.1979.0068.

[7]

P. Holmes and D. Rand, Phase portraits and bifurcations of the non-linear oscillator $x'' +(\alpha+\gamma x^2 )x'+\beta x+\delta x^3 =0$,, International Journal of Non-linear Mechanics, 15 (1980), 449.

[8]

P. Holmes and D. Whitley, On the attracting set for Duffing's equation, II. A geometrical model for moderate force and damping,, Physica D, 7 (1983), 111. doi: 10.1016/0167-2789(83)90121-5.

[9]

P. J. Holmes and D. A. Rand, The bifurcations of Duffing's equation: An application of catastrophe theory,, Journal of Sound and Vibration, 44 (1976), 237. doi: 10.1016/0022-460X(76)90771-9.

[10]

W. Huang and Z. Shen, On a two-point boundary value problem of Duffing type equation with Dirichlet conditions., Appl. Math., 14 (1999), 131. doi: 10.1007/s11766-999-0018-x.

[11]

J. Mawhin, The forced pendulum: A paradigm for nonlinear analysis and dynamical systems,, Exposition. Math., 6 (1988), 271.

[12]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problem,, Springer, (2013). doi: 10.1007/978-1-4614-4232-5.

[13]

F. C. Moon and P. J. Holmes, A magnetoelastic strange attractor,, Journal of Sound and Vibration, 65 (1979), 275. doi: 10.1016/0022-460X(79)90520-0.

[14]

F. C. Moon and P. J. Holmes, Addendum: A magnetoelastic strange attractor,, Journal of Sound and Vibration, 69 (1980).

[15]

P. Tomiczek, Remark on Duffing equation with Dirichlet boundary condition,, Electron. J. Differ. Equ., 81 (2007), 1.

[1]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[2]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[3]

Leszek Gasiński, Nikolaos S. Papageorgiou. Nonlinear hemivariational inequalities with eigenvalues near zero. Conference Publications, 2005, 2005 (Special) : 317-326. doi: 10.3934/proc.2005.2005.317

[4]

Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409

[5]

Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221

[6]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[7]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[8]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[9]

Stanislaw Migórski, Anna Ochal. Navier-Stokes problems modeled by evolution hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 731-740. doi: 10.3934/proc.2007.2007.731

[10]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[11]

Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

[12]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[13]

Yongjian Liu, Zhenhai Liu, Ching-Feng Wen. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1297-1307. doi: 10.3934/dcdsb.2019017

[14]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[15]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[16]

Zhaosheng Feng, Goong Chen, Sze-Bi Hsu. A qualitative study of the damped duffing equation and applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1097-1112. doi: 10.3934/dcdsb.2006.6.1097

[17]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[18]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[19]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[20]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]