Citation: |
[1] |
D. Abbot, A. Viogt and D. Koll, The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res., 116 (2011).doi: 10.1029/2011JD015927. |
[2] |
H. Bao, J. Lyons and C. Zhou, Triple oxygen isotope evidence for elevated CO$_2$ levels after a Neoproterozoic glaciation, Nature, 453 (2008), 504-506. |
[3] |
P. Bates, K. Lu and C. Zeng, Existence and persistence of invariant manifolds for semiflows in Banach space, Memoirs of the American Mathematical Society, Providence, RI, 135 (1998).doi: 10.1090/memo/0645. |
[4] |
B. Bodiselitsch, C. Koeberl, S. Master and W. Reimold, Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies, Science, 308 (2005), 239-242.doi: 10.1126/science.1104657. |
[5] |
H. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity, 15 (2002), 1205-1267.doi: 10.1088/0951-7715/15/4/312. |
[6] |
H. Broer and R. Vitolo, Dynamical systems modeling of low-frequency variability in low-order atmospheric models, Disc. Cont. Dyn. Syst. B, 10 (2008), 401-419.doi: 10.3934/dcdsb.2008.10.401. |
[7] |
H. Broer, H. Dijkstra, C. Simó, A. Sterk and R. Vitolo, The dynamics of a low-order model for the Atlantic multidecadal oscillation, Disc. Cont. Dyn. Syst. B, 16 (2011), 73-102.doi: 10.3934/dcdsb.2011.16.73. |
[8] |
M. I. Budyko, The effect of solar radiation variation on the climate of the Earth, Tellus, 5 (1969), 611-619. |
[9] |
R. Cahalan and G. North, A stability theorem for energy-balance climate modes, J. Atmos. Sci., 36 (1979), 1178-1188.doi: 10.1175/1520-0469(1979)036<1178:ASTFEB>2.0.CO;2. |
[10] |
P. Chylek and J. A. Coakley, Analytical analysis of a Budyko-type climate model, J. Atmos. Sci., 32 (1975), 675-679.doi: 10.1175/1520-0469(1975)032<0675:AAOABT>2.0.CO;2. |
[11] |
M. Claussen et al, Earth system models of intermediate complexity: Closing the gap in the spectrum of climate models, Climate Dynamics, 18 (2002), 579-586. |
[12] |
C. Graves, W-H. Lee and G. North, New parameterizations and sensitivities for simple climate models, J. Geophys. Res., 198 (1993), 5025-5036.doi: 10.1029/92JD02666. |
[13] |
P. Hoffman, A. Kaufman, G. Halverson and D. Schrag, A Neoproterozoic snowball Earth, Science, 281 (1998), 1342-1346.doi: 10.1126/science.281.5381.1342. |
[14] |
P. Hoffman and D. Schrag, Snowball Earth, Sci. Amer., 282 (2000), 68-75. |
[15] |
P. Hoffman and D. Schrag, The snowball Earth hypothesis: Testing the limits of global change, Terra Nova, 14 (2002), 129-155.doi: 10.1046/j.1365-3121.2002.00408.x. |
[16] |
R. Kerr, Snowball Earth has melted back to a profound wintry mix, Science, 327 (2010), 1186.doi: 10.1126/science.327.5970.1186. |
[17] |
J. Kirschivink, Late Proterozoic low-latitude global glaciation: the snowball Earth, in The Proterozoic Biosphere: A Multidisciplinary Study (eds. J. Schopf and C. Klein), Cambridge University Press, 1992, section 2.3. |
[18] |
W. Langford and G. Lewis, Poleward expansion of Hadley cells, Can. Appl. Math. Quart., 17 (2009), 105-119. |
[19] |
R. Q. Lin and G. North, A study of abrupt climate change in a simple nonlinear climate model, Climate Dynamics, 4 (1990), 253-261.doi: 10.1007/BF00211062. |
[20] |
R. A. Livermore, A. G. Smith and F. J. Vine, Late Palaeozoic to early mesozoic evolution of Pangaea, Nature, 322 (1986), 162-165.doi: 10.1038/322162a0. |
[21] |
E. Lorenz, Irregularity: A fundamental property of the atmosphere, Tellus, 36A (1984), 98-110. |
[22] |
L. Maas, A simple model for the three-dimensional, thermally and wind-driven ocean circulation, Tellus, 46A (1994), 671-680. |
[23] |
F. Macdonald, M. Schmitz, J. Crowley, C. Root, D. Jones, A. Maloof, J. Strauss, P. Cohen, D. Johnston and D. Schrag, Calibrating the cryogenian, Science, 327 (2010), 1241-1243.doi: 10.1126/science.1183325. |
[24] |
H. Marshall, J. Walker and W. Kuhn, Long-term climate change and the geochemical cycle of carbon, J. Geophys. Res., 93 (1988), 791-801.doi: 10.1029/JD093iD01p00791. |
[25] |
R., McGehee, personal communication. |
[26] |
R. McGehee and C. Lehman, A paleoclimate model of ice-albedo feedback forced by variations in Earth's orbit, SIAM J. Appl. Dyn. Syst., 11 (2012), 684-707.doi: 10.1137/10079879X. |
[27] |
R. McGehee and E. Widiasih, A finite dimensional version of a dynamic ice-albedo feedback model, preprint. |
[28] |
G. North, Theory of energy-balance climate models, J. Atmos. Sci., 32 (1975), 2033-2043.doi: 10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2. |
[29] |
R. Pierrehumbert, Principles of Planetary Climate, Cambridge University Press, New York, 2010. |
[30] |
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, FL, 1995.doi: 10.1117/12.217385. |
[31] |
G. Roe and M. Baker, Note on a catastrophe: A feedback analysis of snowball Earth, J. of Climate, 23 (2010), 4694-4703.doi: 10.1175/2010JCLI3545.1. |
[32] |
P. Roebber, Climate variability in a low-order coupled atmosphere-ocean model, Tellus, 47A (1995), 473-494. |
[33] |
C. Sagan and G. Mullen, Earth and Mars: Evolution of atmospheres and surface temperatures, Science, 177 (1972), 52-56.doi: 10.1126/science.177.4043.52. |
[34] |
R. Secord, P. Gingerich, K. Lohmann and K. MacLeod, Continental warming preceding the Palaeocene-Eocene thermal maximum, Nature, 467 (2010), 955-959.doi: 10.1038/nature09441. |
[35] |
W. Sellers, A global climatic model based on the energy balance of the Earth-Atmosphere system, J. Appl. Meteor., 8 (1969), 392-400.doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2. |
[36] |
A. Shil'nikov, G. Nicolis and C. Nicolis, Bifurcation and predictability analysis of a low-order atmospheric circulation model, Int. J. Bif. Chaos, 5 (1995), 1701-1711.doi: 10.1142/S0218127495001253. |
[37] |
H. E. de Swart, Low-order spectral models of the atmospheric circulation: A survey, Acta Appl. Math., 11 (1988), 49-96.doi: 10.1007/BF00047114. |
[38] |
K. K. Tung, Topics in Mathematical Modeling, Princeton University Press, Princeton, New Jersey, 2007. |
[39] |
L. van Veen, Overturning and wind driven circulation in a low-order ocean-atmosphere model, Dynam. Atmos. Ocean, 37 (2003), 197-221.doi: 10.1016/S0377-0265(03)00032-0. |
[40] |
L. van Veen, Baroclinic flow and the Lorenz-84 model, Int. J. Bif. Chaos, 13 (2003), 2117-2139.doi: 10.1142/S0218127403007904. |
[41] |
E. Widiasih, Instability of the ice free earth: Dynamics of a discrete time energy balance model, preprint arXiv:1105.4918. |