October  2014, 19(8): 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

Periodic solutions to differential equations with a generalized p-Laplacian

1. 

Centre of Mathematics and Physics, Technical University of Łódź, 90-924 Łódź, ul. Wólczańska 215, Poland

2. 

Institute of Mathematics, Technical University of Łódź, 90-924 Łódź, ul. Wólczańska 215, Poland, Poland

Received  October 2013 Revised  February 2014 Published  August 2014

The existence of a periodic solution to nonlinear ODEs with $\varphi$-Laplacian is proved under conditions on functions given in the equation (not on the unknown solutions). The results are applied to a relativistic pendulum equation in a general form.
Citation: Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593
References:
[1]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians,, J. Dynam. Differential Equations, 22 (2010), 463.  doi: 10.1007/s10884-010-9172-3.  Google Scholar

[2]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian,, J. Differential Equations, 243 (2007), 536.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[3]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum,, Proc. Amer. Math. Soc., 140 (2012), 2713.  doi: 10.1090/S0002-9939-2011-11101-8.  Google Scholar

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations, 23 (2010), 801.   Google Scholar

[5]

J. A. Cid and P. J. Torres, On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian,, Discrete Contin. Dyn. Syst., 33 (2013), 141.  doi: 10.3934/dcds.2013.33.141.  Google Scholar

[6]

W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian,, Nonl. Anal. TMA, 58 (2004), 477.  doi: 10.1016/j.na.2004.01.007.  Google Scholar

[7]

S. Ma and Y. Zhang, Existence of infinitely many periodic solutions for ordinary p-Laplacian systems,, J. Math. Anal. Appl., 351 (2009), 469.  doi: 10.1016/j.jmaa.2008.10.027.  Google Scholar

[8]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators,, J. Differential Equations, 145 (1998), 367.  doi: 10.1006/jdeq.1998.3425.  Google Scholar

[9]

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators,, J. Korean Math. Soc., 37 (2000), 665.   Google Scholar

[10]

J. Mawhin, Periodic solutions of the forced pendulum: Classical vs relativistic,, Le Mathematiche, 65 (2010), 97.   Google Scholar

[11]

Xiang Lv, Shiping Lu and Ping Yan, Periodic solutions of non-autonomous ordinary p-Laplacian systems,, J. Appl. Math. Comput., 35 (2011), 11.  doi: 10.1007/s12190-009-0336-4.  Google Scholar

[12]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian,, Commun. Contemp. Mathematics, 13 (2011), 283.  doi: 10.1142/S0219199711004208.  Google Scholar

show all references

References:
[1]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians,, J. Dynam. Differential Equations, 22 (2010), 463.  doi: 10.1007/s10884-010-9172-3.  Google Scholar

[2]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian,, J. Differential Equations, 243 (2007), 536.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[3]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum,, Proc. Amer. Math. Soc., 140 (2012), 2713.  doi: 10.1090/S0002-9939-2011-11101-8.  Google Scholar

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations, 23 (2010), 801.   Google Scholar

[5]

J. A. Cid and P. J. Torres, On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian,, Discrete Contin. Dyn. Syst., 33 (2013), 141.  doi: 10.3934/dcds.2013.33.141.  Google Scholar

[6]

W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian,, Nonl. Anal. TMA, 58 (2004), 477.  doi: 10.1016/j.na.2004.01.007.  Google Scholar

[7]

S. Ma and Y. Zhang, Existence of infinitely many periodic solutions for ordinary p-Laplacian systems,, J. Math. Anal. Appl., 351 (2009), 469.  doi: 10.1016/j.jmaa.2008.10.027.  Google Scholar

[8]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators,, J. Differential Equations, 145 (1998), 367.  doi: 10.1006/jdeq.1998.3425.  Google Scholar

[9]

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators,, J. Korean Math. Soc., 37 (2000), 665.   Google Scholar

[10]

J. Mawhin, Periodic solutions of the forced pendulum: Classical vs relativistic,, Le Mathematiche, 65 (2010), 97.   Google Scholar

[11]

Xiang Lv, Shiping Lu and Ping Yan, Periodic solutions of non-autonomous ordinary p-Laplacian systems,, J. Appl. Math. Comput., 35 (2011), 11.  doi: 10.1007/s12190-009-0336-4.  Google Scholar

[12]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian,, Commun. Contemp. Mathematics, 13 (2011), 283.  doi: 10.1142/S0219199711004208.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[5]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[6]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[7]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[8]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[9]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (2)

[Back to Top]