October  2014, 19(8): 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

Variational approach to stability of semilinear wave equation with nonlinear boundary conditions

1. 

University of Lodz, Faculty of Math & Computer Sciences, Banacha 22, 90-238 Lodz

Received  October 2013 Revised  April 2014 Published  August 2014

We discuss solvability for the semilinear equation of the vibrating string $ x_{tt}(t,y)-\Delta x(t,y)=F_{x}(t,y,x(t,y))-G_{x}(t,y,x(t,y))$ in bounded domain and same type of nonlinearity on the boundary. To this effect we derive new variational methods one for the boundary equation the second for interior equation. Next we discuss stability of solutions with respect to initial conditions basing on variational approach.
Citation: Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603
References:
[1]

G. Auchmuty, Variational principles for finite dimensional initial value problems,, Contemporar y Math., 426 (2007), 45.  doi: 10.1090/conm/426/08183.  Google Scholar

[2]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[3]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571.  doi: 10.1090/S0002-9947-05-03880-8.  Google Scholar

[4]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping,, DCDS, 22 (2008), 835.  doi: 10.3934/dcds.2008.22.835.  Google Scholar

[5]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[6]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032.  doi: 10.1002/mana.200910182.  Google Scholar

[7]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017.  doi: 10.1016/j.matcom.2011.04.006.  Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451.   Google Scholar

[9]

M. M. Cavalcanti, V. N. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction,, J. Differential Equations, 236 (2007), 407.  doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[10]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976).   Google Scholar

[12]

R. T. Glassey, Blow-up theorems for nonlinear wave equations,, Math. Z., 132 (1973), 183.  doi: 10.1007/BF01213863.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.   Google Scholar

[14]

H. A. Levine and G. Todorova, Blow up of solutions of the Cauch problem for a wave equation with nonlinear damping term and source terms and positive initial energy,, Proc. Amer. Math. Soc., 129 (2001), 793.  doi: 10.1090/S0002-9939-00-05743-9.  Google Scholar

[15]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[16]

A. Nowakowski, Nonhomogeneous boundary value problem for semilinear hyperbolic equation,, Journal of Dynamical and Control Systems, 14 (2008), 537.  doi: 10.1007/s10883-008-9050-z.  Google Scholar

[17]

A. Nowakowski, Nonlinear parabolic equations associated with subdifferential operators, periodic problems,, Bull. Polish Acad. Sc. Math., 36 (1998), 615.   Google Scholar

[18]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495.  doi: 10.1016/j.na.2010.04.035.  Google Scholar

[19]

L. E. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Math. J., 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[20]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77.  doi: 10.5269/bspm.v25i1-2.7427.  Google Scholar

[21]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms,, Nonlinear Analysis, 41 (2000), 891.  doi: 10.1016/S0362-546X(98)00317-4.  Google Scholar

[22]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173.   Google Scholar

[23]

E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms,, J. Differential Equations, 186 (2002), 259.  doi: 10.1016/S0022-0396(02)00023-2.  Google Scholar

[24]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375.  doi: 10.1017/S0017089502030045.  Google Scholar

[25]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

show all references

References:
[1]

G. Auchmuty, Variational principles for finite dimensional initial value problems,, Contemporar y Math., 426 (2007), 45.  doi: 10.1090/conm/426/08183.  Google Scholar

[2]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[3]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571.  doi: 10.1090/S0002-9947-05-03880-8.  Google Scholar

[4]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping,, DCDS, 22 (2008), 835.  doi: 10.3934/dcds.2008.22.835.  Google Scholar

[5]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[6]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032.  doi: 10.1002/mana.200910182.  Google Scholar

[7]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017.  doi: 10.1016/j.matcom.2011.04.006.  Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451.   Google Scholar

[9]

M. M. Cavalcanti, V. N. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction,, J. Differential Equations, 236 (2007), 407.  doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[10]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976).   Google Scholar

[12]

R. T. Glassey, Blow-up theorems for nonlinear wave equations,, Math. Z., 132 (1973), 183.  doi: 10.1007/BF01213863.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.   Google Scholar

[14]

H. A. Levine and G. Todorova, Blow up of solutions of the Cauch problem for a wave equation with nonlinear damping term and source terms and positive initial energy,, Proc. Amer. Math. Soc., 129 (2001), 793.  doi: 10.1090/S0002-9939-00-05743-9.  Google Scholar

[15]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[16]

A. Nowakowski, Nonhomogeneous boundary value problem for semilinear hyperbolic equation,, Journal of Dynamical and Control Systems, 14 (2008), 537.  doi: 10.1007/s10883-008-9050-z.  Google Scholar

[17]

A. Nowakowski, Nonlinear parabolic equations associated with subdifferential operators, periodic problems,, Bull. Polish Acad. Sc. Math., 36 (1998), 615.   Google Scholar

[18]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495.  doi: 10.1016/j.na.2010.04.035.  Google Scholar

[19]

L. E. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Math. J., 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[20]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77.  doi: 10.5269/bspm.v25i1-2.7427.  Google Scholar

[21]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms,, Nonlinear Analysis, 41 (2000), 891.  doi: 10.1016/S0362-546X(98)00317-4.  Google Scholar

[22]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173.   Google Scholar

[23]

E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms,, J. Differential Equations, 186 (2002), 259.  doi: 10.1016/S0022-0396(02)00023-2.  Google Scholar

[24]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375.  doi: 10.1017/S0017089502030045.  Google Scholar

[25]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[6]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[7]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[20]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]