October  2014, 19(8): 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

Variational approach to stability of semilinear wave equation with nonlinear boundary conditions

1. 

University of Lodz, Faculty of Math & Computer Sciences, Banacha 22, 90-238 Lodz

Received  October 2013 Revised  April 2014 Published  August 2014

We discuss solvability for the semilinear equation of the vibrating string $ x_{tt}(t,y)-\Delta x(t,y)=F_{x}(t,y,x(t,y))-G_{x}(t,y,x(t,y))$ in bounded domain and same type of nonlinearity on the boundary. To this effect we derive new variational methods one for the boundary equation the second for interior equation. Next we discuss stability of solutions with respect to initial conditions basing on variational approach.
Citation: Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603
References:
[1]

G. Auchmuty, Variational principles for finite dimensional initial value problems,, Contemporar y Math., 426 (2007), 45.  doi: 10.1090/conm/426/08183.  Google Scholar

[2]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[3]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571.  doi: 10.1090/S0002-9947-05-03880-8.  Google Scholar

[4]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping,, DCDS, 22 (2008), 835.  doi: 10.3934/dcds.2008.22.835.  Google Scholar

[5]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[6]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032.  doi: 10.1002/mana.200910182.  Google Scholar

[7]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017.  doi: 10.1016/j.matcom.2011.04.006.  Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451.   Google Scholar

[9]

M. M. Cavalcanti, V. N. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction,, J. Differential Equations, 236 (2007), 407.  doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[10]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976).   Google Scholar

[12]

R. T. Glassey, Blow-up theorems for nonlinear wave equations,, Math. Z., 132 (1973), 183.  doi: 10.1007/BF01213863.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.   Google Scholar

[14]

H. A. Levine and G. Todorova, Blow up of solutions of the Cauch problem for a wave equation with nonlinear damping term and source terms and positive initial energy,, Proc. Amer. Math. Soc., 129 (2001), 793.  doi: 10.1090/S0002-9939-00-05743-9.  Google Scholar

[15]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[16]

A. Nowakowski, Nonhomogeneous boundary value problem for semilinear hyperbolic equation,, Journal of Dynamical and Control Systems, 14 (2008), 537.  doi: 10.1007/s10883-008-9050-z.  Google Scholar

[17]

A. Nowakowski, Nonlinear parabolic equations associated with subdifferential operators, periodic problems,, Bull. Polish Acad. Sc. Math., 36 (1998), 615.   Google Scholar

[18]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495.  doi: 10.1016/j.na.2010.04.035.  Google Scholar

[19]

L. E. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Math. J., 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[20]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77.  doi: 10.5269/bspm.v25i1-2.7427.  Google Scholar

[21]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms,, Nonlinear Analysis, 41 (2000), 891.  doi: 10.1016/S0362-546X(98)00317-4.  Google Scholar

[22]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173.   Google Scholar

[23]

E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms,, J. Differential Equations, 186 (2002), 259.  doi: 10.1016/S0022-0396(02)00023-2.  Google Scholar

[24]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375.  doi: 10.1017/S0017089502030045.  Google Scholar

[25]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

show all references

References:
[1]

G. Auchmuty, Variational principles for finite dimensional initial value problems,, Contemporar y Math., 426 (2007), 45.  doi: 10.1090/conm/426/08183.  Google Scholar

[2]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[3]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571.  doi: 10.1090/S0002-9947-05-03880-8.  Google Scholar

[4]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping,, DCDS, 22 (2008), 835.  doi: 10.3934/dcds.2008.22.835.  Google Scholar

[5]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[6]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032.  doi: 10.1002/mana.200910182.  Google Scholar

[7]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017.  doi: 10.1016/j.matcom.2011.04.006.  Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451.   Google Scholar

[9]

M. M. Cavalcanti, V. N. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction,, J. Differential Equations, 236 (2007), 407.  doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[10]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976).   Google Scholar

[12]

R. T. Glassey, Blow-up theorems for nonlinear wave equations,, Math. Z., 132 (1973), 183.  doi: 10.1007/BF01213863.  Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.   Google Scholar

[14]

H. A. Levine and G. Todorova, Blow up of solutions of the Cauch problem for a wave equation with nonlinear damping term and source terms and positive initial energy,, Proc. Amer. Math. Soc., 129 (2001), 793.  doi: 10.1090/S0002-9939-00-05743-9.  Google Scholar

[15]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[16]

A. Nowakowski, Nonhomogeneous boundary value problem for semilinear hyperbolic equation,, Journal of Dynamical and Control Systems, 14 (2008), 537.  doi: 10.1007/s10883-008-9050-z.  Google Scholar

[17]

A. Nowakowski, Nonlinear parabolic equations associated with subdifferential operators, periodic problems,, Bull. Polish Acad. Sc. Math., 36 (1998), 615.   Google Scholar

[18]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495.  doi: 10.1016/j.na.2010.04.035.  Google Scholar

[19]

L. E. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Math. J., 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[20]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77.  doi: 10.5269/bspm.v25i1-2.7427.  Google Scholar

[21]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms,, Nonlinear Analysis, 41 (2000), 891.  doi: 10.1016/S0362-546X(98)00317-4.  Google Scholar

[22]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173.   Google Scholar

[23]

E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms,, J. Differential Equations, 186 (2002), 259.  doi: 10.1016/S0022-0396(02)00023-2.  Google Scholar

[24]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375.  doi: 10.1017/S0017089502030045.  Google Scholar

[25]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

[1]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[2]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[3]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[4]

Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems & Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51

[5]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[6]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[7]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[8]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

[9]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[10]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[11]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[12]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[13]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[14]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[15]

Guangyue Huang, Wenyi Chen. Uniqueness for the solution of semi-linear elliptic Neumann problems in $\mathbb R^3$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1269-1273. doi: 10.3934/cpaa.2008.7.1269

[16]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[17]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[18]

Y. Kabeya, Eiji Yanagida, Shoji Yotsutani. Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems. Communications on Pure & Applied Analysis, 2002, 1 (1) : 85-102. doi: 10.3934/cpaa.2002.1.85

[19]

Houda Mokrani. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1619-1636. doi: 10.3934/cpaa.2009.8.1619

[20]

Jason R. Morris. A Sobolev space approach for global solutions to certain semi-linear heat equations in bounded domains. Conference Publications, 2009, 2009 (Special) : 574-582. doi: 10.3934/proc.2009.2009.574

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]