-
Previous Article
On a nonlinear age-structured model of semelparous species
- DCDS-B Home
- This Issue
-
Next Article
Generalized fractional isoperimetric problem of several variables
A note on the existence and properties of evanescent solutions for nonlinear elliptic problems
1. | Faculty of Mathematics and Computer Science, University of Lodz, S. Banacha 22, 90-238 Lodz, Poland |
References:
[1] |
A. Constantin, Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 54 (1996), 147-154.
doi: 10.1017/S0004972700015148. |
[2] |
A. Constantin, Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl., 213 (1997), 334-339.
doi: 10.1006/jmaa.1997.5541. |
[3] |
A. Constantin, On the existence of positive solutions of second order differential equations, Ann. Mat. Pura Appl., 184 (2005), 131-138.
doi: 10.1007/s10231-004-0100-1. |
[4] |
J. Deng, Bounded positive solutions of semilinear elliptic equations, J. Math. Anal. Appl., 336 (2007), 1395-1405.
doi: 10.1016/j.jmaa.2007.03.071. |
[5] |
J. Deng, Existence of bounded positive solutions of semilinear elliptic equations, Nonlin. Anal., T.M.A., 68 (2008), 3697-3706.
doi: 10.1016/j.na.2007.04.012. |
[6] |
S. Djebali, T. Moussaoui and O. G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl., 333 (2007), 863-870.
doi: 10.1016/j.jmaa.2006.12.004. |
[7] |
S. Djebali and A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems, J Math. Anal. Appl., 353 (2009), 215-223.
doi: 10.1016/j.jmaa.2008.12.003. |
[8] |
S. Djebali and A. Orpel, The continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains, Nonlinear Analysis, 73 (2010), 660-672.
doi: 10.1016/j.na.2010.03.054. |
[9] |
M. Ehrnström, Positive solutions for second-order nonlinear differential equation, Nonlinear Analysis, 64 (2006), 1608-1620.
doi: 10.1016/j.na.2005.07.010. |
[10] |
M. Ehrnström, On radial solutions of certain semi-linear elliptic equations, Nonlinear Analysis, 64 (2006), 1578-1586.
doi: 10.1016/j.na.2005.07.008. |
[11] |
M. Ehrnström and O. G. Mustafa, On positive solutions of a class of nonlinear elliptic equations, Nonlinear Analysis, 67 (2007), 1147-1154.
doi: 10.1016/j.na.2006.07.002. |
[12] |
E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl., 75 (1980), 121-133.
doi: 10.1016/0022-247X(80)90310-8. |
[13] |
B. Przeradzki and R. Stańczy, Positive solutions for sublinear elliptic equations, Colloq. Math., 92 (2002), 141-151.
doi: 10.4064/cm92-1-12. |
[14] |
E. Wahlén, Positive solutions of second-order differential equations, Nonlinear Anal., 58 (2004), 359-366.
doi: 10.1016/j.na.2004.05.008. |
[15] |
Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal., 54 (2003), 391-403.
doi: 10.1016/S0362-546X(03)00089-0. |
show all references
References:
[1] |
A. Constantin, Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 54 (1996), 147-154.
doi: 10.1017/S0004972700015148. |
[2] |
A. Constantin, Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl., 213 (1997), 334-339.
doi: 10.1006/jmaa.1997.5541. |
[3] |
A. Constantin, On the existence of positive solutions of second order differential equations, Ann. Mat. Pura Appl., 184 (2005), 131-138.
doi: 10.1007/s10231-004-0100-1. |
[4] |
J. Deng, Bounded positive solutions of semilinear elliptic equations, J. Math. Anal. Appl., 336 (2007), 1395-1405.
doi: 10.1016/j.jmaa.2007.03.071. |
[5] |
J. Deng, Existence of bounded positive solutions of semilinear elliptic equations, Nonlin. Anal., T.M.A., 68 (2008), 3697-3706.
doi: 10.1016/j.na.2007.04.012. |
[6] |
S. Djebali, T. Moussaoui and O. G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl., 333 (2007), 863-870.
doi: 10.1016/j.jmaa.2006.12.004. |
[7] |
S. Djebali and A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems, J Math. Anal. Appl., 353 (2009), 215-223.
doi: 10.1016/j.jmaa.2008.12.003. |
[8] |
S. Djebali and A. Orpel, The continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains, Nonlinear Analysis, 73 (2010), 660-672.
doi: 10.1016/j.na.2010.03.054. |
[9] |
M. Ehrnström, Positive solutions for second-order nonlinear differential equation, Nonlinear Analysis, 64 (2006), 1608-1620.
doi: 10.1016/j.na.2005.07.010. |
[10] |
M. Ehrnström, On radial solutions of certain semi-linear elliptic equations, Nonlinear Analysis, 64 (2006), 1578-1586.
doi: 10.1016/j.na.2005.07.008. |
[11] |
M. Ehrnström and O. G. Mustafa, On positive solutions of a class of nonlinear elliptic equations, Nonlinear Analysis, 67 (2007), 1147-1154.
doi: 10.1016/j.na.2006.07.002. |
[12] |
E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl., 75 (1980), 121-133.
doi: 10.1016/0022-247X(80)90310-8. |
[13] |
B. Przeradzki and R. Stańczy, Positive solutions for sublinear elliptic equations, Colloq. Math., 92 (2002), 141-151.
doi: 10.4064/cm92-1-12. |
[14] |
E. Wahlén, Positive solutions of second-order differential equations, Nonlinear Anal., 58 (2004), 359-366.
doi: 10.1016/j.na.2004.05.008. |
[15] |
Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal., 54 (2003), 391-403.
doi: 10.1016/S0362-546X(03)00089-0. |
[1] |
Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017 |
[2] |
Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367 |
[3] |
Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97 |
[4] |
Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027 |
[5] |
Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707 |
[6] |
Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383 |
[7] |
Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183 |
[8] |
Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209 |
[9] |
Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590 |
[10] |
Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251 |
[11] |
Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 |
[12] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, 2021, 29 (3) : 2359-2373. doi: 10.3934/era.2020119 |
[13] |
Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463 |
[14] |
Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237 |
[15] |
Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092 |
[16] |
Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483 |
[17] |
Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027 |
[18] |
Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675 |
[19] |
Goong Chen, Zhonghai Ding, Shujie Li. On positive solutions of the elliptic sine-Gordon equation. Communications on Pure and Applied Analysis, 2005, 4 (2) : 283-294. doi: 10.3934/cpaa.2005.4.283 |
[20] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]