October  2014, 19(8): 2631-2639. doi: 10.3934/dcdsb.2014.19.2631

A note on the existence and properties of evanescent solutions for nonlinear elliptic problems

1. 

Faculty of Mathematics and Computer Science, University of Lodz, S. Banacha 22, 90-238 Lodz, Poland

Received  October 2013 Revised  April 2014 Published  August 2014

Basing ourselves on the subsolution and supersolution method we investigate the existence and properties of solutions of the following class of elliptic differential equations $div(a(||x||)\nabla u(x)) + f(x,u(x)) + g(||x||)k(x\cdot\nabla u(x)) = 0,$ $x\in\mathbb{R}^{n},||x||>R.$ Our main result concernes the behavior of solution at infinity.
Citation: Aleksandra Orpel. A note on the existence and properties of evanescent solutions for nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2631-2639. doi: 10.3934/dcdsb.2014.19.2631
References:
[1]

A. Constantin, Existence of positive solutions of quasilinear elliptic equations,, Bull. Austral. Math. Soc., 54 (1996), 147.  doi: 10.1017/S0004972700015148.  Google Scholar

[2]

A. Constantin, Positive solutions of quasilinear elliptic equations,, J. Math. Anal. Appl., 213 (1997), 334.  doi: 10.1006/jmaa.1997.5541.  Google Scholar

[3]

A. Constantin, On the existence of positive solutions of second order differential equations,, Ann. Mat. Pura Appl., 184 (2005), 131.  doi: 10.1007/s10231-004-0100-1.  Google Scholar

[4]

J. Deng, Bounded positive solutions of semilinear elliptic equations,, J. Math. Anal. Appl., 336 (2007), 1395.  doi: 10.1016/j.jmaa.2007.03.071.  Google Scholar

[5]

J. Deng, Existence of bounded positive solutions of semilinear elliptic equations,, Nonlin. Anal., 68 (2008), 3697.  doi: 10.1016/j.na.2007.04.012.  Google Scholar

[6]

S. Djebali, T. Moussaoui and O. G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations,, J. Math. Anal. Appl., 333 (2007), 863.  doi: 10.1016/j.jmaa.2006.12.004.  Google Scholar

[7]

S. Djebali and A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems,, J Math. Anal. Appl., 353 (2009), 215.  doi: 10.1016/j.jmaa.2008.12.003.  Google Scholar

[8]

S. Djebali and A. Orpel, The continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains,, Nonlinear Analysis, 73 (2010), 660.  doi: 10.1016/j.na.2010.03.054.  Google Scholar

[9]

M. Ehrnström, Positive solutions for second-order nonlinear differential equation,, Nonlinear Analysis, 64 (2006), 1608.  doi: 10.1016/j.na.2005.07.010.  Google Scholar

[10]

M. Ehrnström, On radial solutions of certain semi-linear elliptic equations,, Nonlinear Analysis, 64 (2006), 1578.  doi: 10.1016/j.na.2005.07.008.  Google Scholar

[11]

M. Ehrnström and O. G. Mustafa, On positive solutions of a class of nonlinear elliptic equations,, Nonlinear Analysis, 67 (2007), 1147.  doi: 10.1016/j.na.2006.07.002.  Google Scholar

[12]

E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains,, J. Math. Anal. Appl., 75 (1980), 121.  doi: 10.1016/0022-247X(80)90310-8.  Google Scholar

[13]

B. Przeradzki and R. Stańczy, Positive solutions for sublinear elliptic equations,, Colloq. Math., 92 (2002), 141.  doi: 10.4064/cm92-1-12.  Google Scholar

[14]

E. Wahlén, Positive solutions of second-order differential equations,, Nonlinear Anal., 58 (2004), 359.  doi: 10.1016/j.na.2004.05.008.  Google Scholar

[15]

Z. Yin, Monotone positive solutions of second-order nonlinear differential equations,, Nonlinear Anal., 54 (2003), 391.  doi: 10.1016/S0362-546X(03)00089-0.  Google Scholar

show all references

References:
[1]

A. Constantin, Existence of positive solutions of quasilinear elliptic equations,, Bull. Austral. Math. Soc., 54 (1996), 147.  doi: 10.1017/S0004972700015148.  Google Scholar

[2]

A. Constantin, Positive solutions of quasilinear elliptic equations,, J. Math. Anal. Appl., 213 (1997), 334.  doi: 10.1006/jmaa.1997.5541.  Google Scholar

[3]

A. Constantin, On the existence of positive solutions of second order differential equations,, Ann. Mat. Pura Appl., 184 (2005), 131.  doi: 10.1007/s10231-004-0100-1.  Google Scholar

[4]

J. Deng, Bounded positive solutions of semilinear elliptic equations,, J. Math. Anal. Appl., 336 (2007), 1395.  doi: 10.1016/j.jmaa.2007.03.071.  Google Scholar

[5]

J. Deng, Existence of bounded positive solutions of semilinear elliptic equations,, Nonlin. Anal., 68 (2008), 3697.  doi: 10.1016/j.na.2007.04.012.  Google Scholar

[6]

S. Djebali, T. Moussaoui and O. G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations,, J. Math. Anal. Appl., 333 (2007), 863.  doi: 10.1016/j.jmaa.2006.12.004.  Google Scholar

[7]

S. Djebali and A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems,, J Math. Anal. Appl., 353 (2009), 215.  doi: 10.1016/j.jmaa.2008.12.003.  Google Scholar

[8]

S. Djebali and A. Orpel, The continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains,, Nonlinear Analysis, 73 (2010), 660.  doi: 10.1016/j.na.2010.03.054.  Google Scholar

[9]

M. Ehrnström, Positive solutions for second-order nonlinear differential equation,, Nonlinear Analysis, 64 (2006), 1608.  doi: 10.1016/j.na.2005.07.010.  Google Scholar

[10]

M. Ehrnström, On radial solutions of certain semi-linear elliptic equations,, Nonlinear Analysis, 64 (2006), 1578.  doi: 10.1016/j.na.2005.07.008.  Google Scholar

[11]

M. Ehrnström and O. G. Mustafa, On positive solutions of a class of nonlinear elliptic equations,, Nonlinear Analysis, 67 (2007), 1147.  doi: 10.1016/j.na.2006.07.002.  Google Scholar

[12]

E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains,, J. Math. Anal. Appl., 75 (1980), 121.  doi: 10.1016/0022-247X(80)90310-8.  Google Scholar

[13]

B. Przeradzki and R. Stańczy, Positive solutions for sublinear elliptic equations,, Colloq. Math., 92 (2002), 141.  doi: 10.4064/cm92-1-12.  Google Scholar

[14]

E. Wahlén, Positive solutions of second-order differential equations,, Nonlinear Anal., 58 (2004), 359.  doi: 10.1016/j.na.2004.05.008.  Google Scholar

[15]

Z. Yin, Monotone positive solutions of second-order nonlinear differential equations,, Nonlinear Anal., 54 (2003), 391.  doi: 10.1016/S0362-546X(03)00089-0.  Google Scholar

[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]