October  2014, 19(8): 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints

1. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

2. 

Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653

3. 

Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany

Received  November 2013 Revised  January 2014 Published  August 2014

We consider the optimal control problem of minimizing an objective function that is quadratic in the control over a fixed interval for a multi-input bilinear dynamical system in the presence of control constraints. Such models are motivated by and applied to mathematical models for cancer chemotherapy over an a priori specified fixed therapy horizon. The necessary conditions for optimality of the Pontryagin maximum principle are easily evaluated and give a functional description of optimal controls as continuous functions of states and multipliers. However, there is no a priori guarantee that a numerically computed extremal controlled trajectory is locally optimal. In this paper, we formulate sufficient conditions for strong local optimality that are based on the existence of a bounded solution to a matrix Riccati differential equation. The theory is applied to a $3$-compartment model for multi-drug cancer chemotherapy with cytotoxic and cytostatic agents. The numerical results are compared with those for a corresponding optimal control problem when the objective is taken linear in the controls.
Citation: Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657
References:
[1]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory,, Series: Mathematics and Applications, (2003).   Google Scholar

[2]

J. V. Breakwell, J. L. Speyer and A. E. Bryson, jr., Optimization and control of nonlinear systems using the second variation,, SIAM J. Control, 1 (1963), 193.  doi: 10.1137/0301011.  Google Scholar

[3]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences, (2007).   Google Scholar

[4]

A. E. Bryson and Y. C. Ho, Applied Optimal Control,, Hemisphere Publishing, (1975).   Google Scholar

[5]

C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and realtime control,, J. of Computational and Applied Mathematics, 120 (2000), 85.  doi: 10.1016/S0377-0427(00)00305-8.  Google Scholar

[6]

C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems,, in Online Optimization of Large Scale Systems (eds. M. Grötschel, (2001), 3.   Google Scholar

[7]

C. Büskens and H. Maurer, Sensitivity analysis and real-time control of parametric optimal control problems using nonlinear programming methods,, in Online Optimization of Large Scale Systems (eds. M. Grötschel, (2001), 57.   Google Scholar

[8]

N. Caroff and H. Frankowska, Conjugate points and shocks in nonlinear optimal control,, Trans. of the American Mathematical Society, 348 (1996), 3133.  doi: 10.1090/S0002-9947-96-01577-2.  Google Scholar

[9]

J. H. Eschenburg and E. Heintze, Comparison theory for Riccati equations,, Manuscripta Matematicae, 68 (1990), 209.  doi: 10.1007/BF02568760.  Google Scholar

[10]

R. Fourer, D.M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,, Duxbury Press, (1993).   Google Scholar

[11]

H. K. Khalil, Nonlinear Systems,, 3rd. ed., (2002).   Google Scholar

[12]

M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy,, Scientific Bulletin of the Silesian Technical University, 65 (1983), 120.   Google Scholar

[13]

H. W. Knobloch and H. Kwakernaak, Lineare Kontrolltheorie,, Springer Verlag, (1985).  doi: 10.1007/978-3-642-69884-2.  Google Scholar

[14]

U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy,, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609.  doi: 10.1023/A:1016027113579.  Google Scholar

[15]

U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183.  doi: 10.1142/S0218339002000597.  Google Scholar

[16]

U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors,, J. of Biological Systems, 22 (2014), 177.  doi: 10.1142/S0218339014400014.  Google Scholar

[17]

U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy,, Mathematical Biosciences and Engineering (MBE), 10 (2013), 803.  doi: 10.3934/mbe.2013.10.803.  Google Scholar

[18]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models,, Chapman & Hall/CRC Mathematical & Computational Biology, (2007).   Google Scholar

[19]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253.  doi: 10.1007/BF00248267.  Google Scholar

[20]

H. Maurer, C. Büskens, J. H. Kim and Y. Kaja, Optimization techniques for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control, 26 (2005), 129.  doi: 10.1002/oca.756.  Google Scholar

[21]

N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control,, SIAM Advances in Design and Control, (2012).  doi: 10.1137/1.9781611972368.  Google Scholar

[22]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, MacMillan, (1964).   Google Scholar

[23]

H. Schättler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation,, Numerical Algebra, 2 (2012), 631.  doi: 10.3934/naco.2012.2.631.  Google Scholar

[24]

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples,, Springer Verlag, (2012).  doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[25]

H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi and M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy,, in Proc. of the 51st IEEE Conference on Decision and Control (Maui, (2012), 7691.   Google Scholar

[26]

A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle,, IMACS Ann. Comput. Appl. Math., 5 (1989), 51.   Google Scholar

[27]

A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41.  doi: 10.1142/S0218339095000058.  Google Scholar

[28]

A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357.   Google Scholar

[29]

A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance,, Nonlinear Analysis, 47 (2001), 375.  doi: 10.1016/S0362-546X(01)00184-5.  Google Scholar

[30]

A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy,, Cell prolif., 29 (1996), 117.  doi: 10.1046/j.1365-2184.1996.00995.x.  Google Scholar

[31]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

show all references

References:
[1]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory,, Series: Mathematics and Applications, (2003).   Google Scholar

[2]

J. V. Breakwell, J. L. Speyer and A. E. Bryson, jr., Optimization and control of nonlinear systems using the second variation,, SIAM J. Control, 1 (1963), 193.  doi: 10.1137/0301011.  Google Scholar

[3]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences, (2007).   Google Scholar

[4]

A. E. Bryson and Y. C. Ho, Applied Optimal Control,, Hemisphere Publishing, (1975).   Google Scholar

[5]

C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and realtime control,, J. of Computational and Applied Mathematics, 120 (2000), 85.  doi: 10.1016/S0377-0427(00)00305-8.  Google Scholar

[6]

C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems,, in Online Optimization of Large Scale Systems (eds. M. Grötschel, (2001), 3.   Google Scholar

[7]

C. Büskens and H. Maurer, Sensitivity analysis and real-time control of parametric optimal control problems using nonlinear programming methods,, in Online Optimization of Large Scale Systems (eds. M. Grötschel, (2001), 57.   Google Scholar

[8]

N. Caroff and H. Frankowska, Conjugate points and shocks in nonlinear optimal control,, Trans. of the American Mathematical Society, 348 (1996), 3133.  doi: 10.1090/S0002-9947-96-01577-2.  Google Scholar

[9]

J. H. Eschenburg and E. Heintze, Comparison theory for Riccati equations,, Manuscripta Matematicae, 68 (1990), 209.  doi: 10.1007/BF02568760.  Google Scholar

[10]

R. Fourer, D.M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,, Duxbury Press, (1993).   Google Scholar

[11]

H. K. Khalil, Nonlinear Systems,, 3rd. ed., (2002).   Google Scholar

[12]

M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy,, Scientific Bulletin of the Silesian Technical University, 65 (1983), 120.   Google Scholar

[13]

H. W. Knobloch and H. Kwakernaak, Lineare Kontrolltheorie,, Springer Verlag, (1985).  doi: 10.1007/978-3-642-69884-2.  Google Scholar

[14]

U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy,, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609.  doi: 10.1023/A:1016027113579.  Google Scholar

[15]

U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183.  doi: 10.1142/S0218339002000597.  Google Scholar

[16]

U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors,, J. of Biological Systems, 22 (2014), 177.  doi: 10.1142/S0218339014400014.  Google Scholar

[17]

U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy,, Mathematical Biosciences and Engineering (MBE), 10 (2013), 803.  doi: 10.3934/mbe.2013.10.803.  Google Scholar

[18]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models,, Chapman & Hall/CRC Mathematical & Computational Biology, (2007).   Google Scholar

[19]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253.  doi: 10.1007/BF00248267.  Google Scholar

[20]

H. Maurer, C. Büskens, J. H. Kim and Y. Kaja, Optimization techniques for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control, 26 (2005), 129.  doi: 10.1002/oca.756.  Google Scholar

[21]

N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control,, SIAM Advances in Design and Control, (2012).  doi: 10.1137/1.9781611972368.  Google Scholar

[22]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, MacMillan, (1964).   Google Scholar

[23]

H. Schättler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation,, Numerical Algebra, 2 (2012), 631.  doi: 10.3934/naco.2012.2.631.  Google Scholar

[24]

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples,, Springer Verlag, (2012).  doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[25]

H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi and M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy,, in Proc. of the 51st IEEE Conference on Decision and Control (Maui, (2012), 7691.   Google Scholar

[26]

A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle,, IMACS Ann. Comput. Appl. Math., 5 (1989), 51.   Google Scholar

[27]

A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41.  doi: 10.1142/S0218339095000058.  Google Scholar

[28]

A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357.   Google Scholar

[29]

A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance,, Nonlinear Analysis, 47 (2001), 375.  doi: 10.1016/S0362-546X(01)00184-5.  Google Scholar

[30]

A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy,, Cell prolif., 29 (1996), 117.  doi: 10.1046/j.1365-2184.1996.00995.x.  Google Scholar

[31]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[1]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[2]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[13]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[14]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[15]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[16]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[17]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[18]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[19]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[20]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (8)

[Back to Top]