Advanced Search
Article Contents
Article Contents

On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type

Abstract Related Papers Cited by
  • A Volterra difference equation of the form $$x(n+2)=a(n)+b(n)x(n+1)+c(n)x(n)+\sum\limits^{n+1}_{i=1}K(n,i)x(i)$$ where $a, b, c, x \colon\mathbb{N} \to\mathbb{R}$ and $K \colon \mathbb{N}\times\mathbb{N}\to \mathbb{R}$ is studied. For every admissible constant $C \in \mathbb{R}$, sufficient conditions for the existence of a solution $x \colon\mathbb{N} \to\mathbb{R}$ of the above equation such that \[ x(n)\sim C \, n \, \beta(n), \] where $\beta(n)= \frac{1}{2^n}\prod\limits_{j=1}^{n-1}b(j)$, are presented. As a corollary of the main result, sufficient conditions for the existence of an eventually positive, oscillatory, and quickly oscillatory solution $x$ of this equation are obtained. Finally, a conditions under which considered equation possesses an asymptotically periodic solution are given.
    Mathematics Subject Classification: Primary: 39A11, 39A23; Secondary: 39A21.


    \begin{equation} \\ \end{equation}
  • [1]

    R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, 228, Marcel Dekker, Inc., New York, 2000.


    J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations, J. Difference Equ. Appl., 12 (2006), 1257-1275.doi: 10.1080/10236190600986594.


    J. Diblík, M. Růžičková and E. Schmeidel, Existence of asymptotically periodic solutions of scalar Volterra difference equations, Tatra Mt. Math. Publ., 43 (2009), 51-61.doi: 10.2478/v10127-009-0024-7.


    J. Diblík, M. Růžičková, E. Schmeidel and M. Zbąszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations, Abstr. Appl. Anal., (2011), Art. ID 370982, 14 pp.doi: 10.1155/2011/370982.


    J. Diblík and E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence, Appl. Math. Comput., 218 (2012), 9310-9320.doi: 10.1016/j.amc.2012.03.010.


    S. N. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.


    T. Gronek and E. Schmeidel, Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem, J. Differ. Equations Appl., 19 (2013), 1645-1653.doi: 10.1080/10236198.2013.769974.


    I. Györi and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference equations, Adv. Difference Equ., (2008), Art. ID 932831, 22 pp.


    I. Györi and D. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations, Fasc. Math., 44 (2010), 53-67.


    W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, San Diego, 2001.


    V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, 256, Kluwer Academic Publishers Group, Dordrecht, 1993.doi: 10.1007/978-94-017-1703-8.


    M. Migda and J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations, Appl. Math. Comput., 220 (2013), 365-373.doi: 10.1016/j.amc.2013.06.032.


    J. Morchało, Perturbation theory for discrete Volterra equation, Int. J. Pure Appl. Math., 68 (2011), 371-385.


    J. Morchało, Volterra summation equations and second order difference equations, Math. Bohem., 135 (2010), 41-56.


    J. Morchało and M. Migda, Boundedness of solutions of difference systems with delays, Comput. Math. Appl., 64 (2012), 2233-2240.doi: 10.1016/j.camwa.2012.01.075.


    J. Musielak, Wstęp do Analizy Funkcjonalnej, (in Polish) PWN, Warszawa 1976.


    E. Schmeidel, Properties of Solutions of Higher Order Difference Equations, Publishing House of Poznan University of Technology, 2010.

  • 加载中

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint