• Previous Article
    Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences
  • DCDS-B Home
  • This Issue
  • Next Article
    Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints
October  2014, 19(8): 2681-2690. doi: 10.3934/dcdsb.2014.19.2681

On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type

1. 

University of Bialystok, ul. Akademicka 2, 15-267 Białystok

2. 

Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland, Poland

Received  November 2013 Revised  May 2014 Published  August 2014

A Volterra difference equation of the form $$x(n+2)=a(n)+b(n)x(n+1)+c(n)x(n)+\sum\limits^{n+1}_{i=1}K(n,i)x(i)$$ where $a, b, c, x \colon\mathbb{N} \to\mathbb{R}$ and $K \colon \mathbb{N}\times\mathbb{N}\to \mathbb{R}$ is studied. For every admissible constant $C \in \mathbb{R}$, sufficient conditions for the existence of a solution $x \colon\mathbb{N} \to\mathbb{R}$ of the above equation such that \[ x(n)\sim C \, n \, \beta(n), \] where $\beta(n)= \frac{1}{2^n}\prod\limits_{j=1}^{n-1}b(j)$, are presented. As a corollary of the main result, sufficient conditions for the existence of an eventually positive, oscillatory, and quickly oscillatory solution $x$ of this equation are obtained. Finally, a conditions under which considered equation possesses an asymptotically periodic solution are given.
Citation: Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681
References:
[1]

R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications,, Second edition, (2000).   Google Scholar

[2]

J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations,, J. Difference Equ. Appl., 12 (2006), 1257.  doi: 10.1080/10236190600986594.  Google Scholar

[3]

J. Diblík, M. Růžičková and E. Schmeidel, Existence of asymptotically periodic solutions of scalar Volterra difference equations,, Tatra Mt. Math. Publ., 43 (2009), 51.  doi: 10.2478/v10127-009-0024-7.  Google Scholar

[4]

J. Diblík, M. Růžičková, E. Schmeidel and M. Zbąszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations,, Abstr. Appl. Anal., (2011).  doi: 10.1155/2011/370982.  Google Scholar

[5]

J. Diblík and E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence,, Appl. Math. Comput., 218 (2012), 9310.  doi: 10.1016/j.amc.2012.03.010.  Google Scholar

[6]

S. N. Elaydi, An Introduction to Difference Equations,, Third edition, (2005).   Google Scholar

[7]

T. Gronek and E. Schmeidel, Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem,, J. Differ. Equations Appl., 19 (2013), 1645.  doi: 10.1080/10236198.2013.769974.  Google Scholar

[8]

I. Györi and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference equations,, Adv. Difference Equ., (2008).   Google Scholar

[9]

I. Györi and D. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations,, Fasc. Math., 44 (2010), 53.   Google Scholar

[10]

W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications,, Academic Press, (2001).   Google Scholar

[11]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993).  doi: 10.1007/978-94-017-1703-8.  Google Scholar

[12]

M. Migda and J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations,, Appl. Math. Comput., 220 (2013), 365.  doi: 10.1016/j.amc.2013.06.032.  Google Scholar

[13]

J. Morchało, Perturbation theory for discrete Volterra equation,, Int. J. Pure Appl. Math., 68 (2011), 371.   Google Scholar

[14]

J. Morchało, Volterra summation equations and second order difference equations,, Math. Bohem., 135 (2010), 41.   Google Scholar

[15]

J. Morchało and M. Migda, Boundedness of solutions of difference systems with delays,, Comput. Math. Appl., 64 (2012), 2233.  doi: 10.1016/j.camwa.2012.01.075.  Google Scholar

[16]

J. Musielak, Wstęp do Analizy Funkcjonalnej,, (in Polish) PWN, (1976).   Google Scholar

[17]

E. Schmeidel, Properties of Solutions of Higher Order Difference Equations,, Publishing House of Poznan University of Technology, (2010).   Google Scholar

show all references

References:
[1]

R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications,, Second edition, (2000).   Google Scholar

[2]

J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations,, J. Difference Equ. Appl., 12 (2006), 1257.  doi: 10.1080/10236190600986594.  Google Scholar

[3]

J. Diblík, M. Růžičková and E. Schmeidel, Existence of asymptotically periodic solutions of scalar Volterra difference equations,, Tatra Mt. Math. Publ., 43 (2009), 51.  doi: 10.2478/v10127-009-0024-7.  Google Scholar

[4]

J. Diblík, M. Růžičková, E. Schmeidel and M. Zbąszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations,, Abstr. Appl. Anal., (2011).  doi: 10.1155/2011/370982.  Google Scholar

[5]

J. Diblík and E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence,, Appl. Math. Comput., 218 (2012), 9310.  doi: 10.1016/j.amc.2012.03.010.  Google Scholar

[6]

S. N. Elaydi, An Introduction to Difference Equations,, Third edition, (2005).   Google Scholar

[7]

T. Gronek and E. Schmeidel, Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem,, J. Differ. Equations Appl., 19 (2013), 1645.  doi: 10.1080/10236198.2013.769974.  Google Scholar

[8]

I. Györi and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference equations,, Adv. Difference Equ., (2008).   Google Scholar

[9]

I. Györi and D. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations,, Fasc. Math., 44 (2010), 53.   Google Scholar

[10]

W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications,, Academic Press, (2001).   Google Scholar

[11]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993).  doi: 10.1007/978-94-017-1703-8.  Google Scholar

[12]

M. Migda and J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations,, Appl. Math. Comput., 220 (2013), 365.  doi: 10.1016/j.amc.2013.06.032.  Google Scholar

[13]

J. Morchało, Perturbation theory for discrete Volterra equation,, Int. J. Pure Appl. Math., 68 (2011), 371.   Google Scholar

[14]

J. Morchało, Volterra summation equations and second order difference equations,, Math. Bohem., 135 (2010), 41.   Google Scholar

[15]

J. Morchało and M. Migda, Boundedness of solutions of difference systems with delays,, Comput. Math. Appl., 64 (2012), 2233.  doi: 10.1016/j.camwa.2012.01.075.  Google Scholar

[16]

J. Musielak, Wstęp do Analizy Funkcjonalnej,, (in Polish) PWN, (1976).   Google Scholar

[17]

E. Schmeidel, Properties of Solutions of Higher Order Difference Equations,, Publishing House of Poznan University of Technology, (2010).   Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]