October  2014, 19(8): 2697-2707. doi: 10.3934/dcdsb.2014.19.2697

The meaning of sensitivity functions in signaling pathways analysis

1. 

Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-101 Gliwice

2. 

Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland, Poland

Received  November 2013 Revised  May 2014 Published  August 2014

The paper deals with local sensitivity analysis of signaling pathway models, based on sensitivity functions. Though the methods are well known, their application to various models is always based on the assumption that the output of the system whose sensitivity is analyzed is given by absolute quantitative data. In signaling pathways models, however, this data is always normalized. In this paper we show what are the implications of the way the signaling pathways models are built for the interpretation of sensitivity functions and parameter rankings based on them. The reasoning is illustrated using simple first- and second order systems as well as an example of a simple regulatory module.
Citation: Jaroslaw Smieja, Malgorzata Kardynska, Arkadiusz Jamroz. The meaning of sensitivity functions in signaling pathways analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2697-2707. doi: 10.3934/dcdsb.2014.19.2697
References:
[1]

M. Bentele, I. Lavrik, M. Ulrich, S. Stosser, D. W. Heermann, H. Kalthoff, P. H. Krammer and R. Eils, Mathematical modeling reveals threshold mechanism in cd95-induced apoptosis,, The Journal of Cell Biology, 166 (2004), 839.  doi: 10.1083/jcb.200404158.  Google Scholar

[2]

J. J. Cruz, Feedback Systems,, McGraw-Hill, (1972).   Google Scholar

[3]

B. C. Daniels, Y. J. Chen, J. P. Sethna, R. N. Gutenkunst and C. R. Myers, Sloppiness, robustness, and evolvability in systems biology,, Curr. Opin. Biotech., 19 (2008), 389.  doi: 10.1016/j.copbio.2008.06.008.  Google Scholar

[4]

A. F. Emery and A. V. Nenarokomov, Optimal experiment design,, Meas. Sci. Technol., 9 (1998), 864.  doi: 10.1088/0957-0233/9/6/003.  Google Scholar

[5]

B. Hat, K. Puszynski and T. Lipniacki, Exploring mechanisms of oscillations in p53 and nuclear factor-$\kappa$B systems,, IET Systems Biology, 3 (2009), 342.  doi: 10.1049/iet-syb.2008.0156.  Google Scholar

[6]

P. Iglesias and B. Ingalls, eds., Control Theory and Systems Biology,, MIT Press, (2010).   Google Scholar

[7]

A. E. C. Ihekwaba, D. S. Broomhead, R. L. Grimley, N. Benson and D. B. Kell, Sensitivity analysis of parameters controlling oscillatory signalling in the NF-kB pathway: the roles of IKK and IkBa,, IEE Syst. Biol., 1 (2004), 93.   Google Scholar

[8]

K. A. Kim, S. L. Spencer, J. G. Albeck, J. M. Burke, P. K. Sorger, S. Gaudet and H. Kim do, Systematic calibration of a cell signaling network model,, BMC Bioinformatics, 11 (2010).  doi: 10.1186/1471-2105-11-202.  Google Scholar

[9]

G. Koh and D-Y. Lee, Mathematical modeling and sensitivity analysis of the integrated TNF -mediated apoptotic pathway for identifying key regulators,, Computers in Biology and Medicine, 41 (2011), 512.   Google Scholar

[10]

M. Komorowski, M. J. Costa, D. A. Rand and M. P. H. Stumpf, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models,, PNAS, 108 (2011), 8645.  doi: 10.1073/pnas.1015814108.  Google Scholar

[11]

J. Leis and M. Kramer, Sensitivity analysis of systems of differential and algebraic equations,, Computers & Chemical Engineering, 9 (1985), 93.  doi: 10.1016/0098-1354(85)87008-3.  Google Scholar

[12]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[13]

A. Marin-Sanguino, S. K. Gupta, E. O. Voit and J. Vera, Biochemical pathway modeling tools for drug target detection in cancer and other complex diseases,, Methods in Enzymology, 487 (2011), 319.  doi: 10.1016/B978-0-12-381270-4.00011-1.  Google Scholar

[14]

D. A. Rand, Mapping the global sensitivity of cellular network dynamics,, J. R. Soc Interface, 5 (2008).   Google Scholar

[15]

M. Rathinam, P. W. Sheppard and M. Khammash, Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks,, Journal of Chemical Physics, 132 (2010).  doi: 10.1063/1.3280166.  Google Scholar

[16]

N. A. W. van Riel, Dynamic modelling and analysis of biochemical networks: Mechanism-based models and model-based experiments,, Briefings in Bioinformatics, 7 (2006), 364.   Google Scholar

[17]

A. Saltelli, M. Ratto, S. Tarantola and F. Campolongo, Sensitivity analysis for chemical models,, Chem. Rev., 105 (2005), 2811.  doi: 10.1021/cr040659d.  Google Scholar

[18]

A. Saltelli, M. Ratto, S. Tarantola and F. Campolongo, Sensitivity analysis practices: Strategies for model-based inference,, Reliability Engineering and System Safety, 91 (2006), 1109.  doi: 10.1016/j.ress.2005.11.014.  Google Scholar

[19]

S.-Y. Shin, S.-M. Choo, S.-H. Woo and K.-H. Cho, Cardiac systems biology and parameter sensitivity analysis: Intracellular $Ca^{2+}$ regulatory mechanisms in mouse ventricular myocytes,, Adv Biochem Engin/Biotechnol, 110 (2008), 25.   Google Scholar

[20]

R. G. P. M. van Stiphout, N. A. W. van Riel, P. J. Verhoog, P. A. J. Hilbers, K. Nicolay and J. A. L. Jeneson, Computational model of excitable cell indicates ATP free energy dynamics in response to calcium oscillations are undampened by cytosolic ATP buffers,, IEE Syst. Biol., 153 (2006), 405.   Google Scholar

[21]

M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks,, Proc. Natl Acad. Sci., 98 (2001), 8614.  doi: 10.1073/pnas.151588598.  Google Scholar

[22]

H. Yue, M. Brown, J. Knowles, H. Wang, D. S. Broomhead and D. B. Kell, Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: A case study of an nf-kappab signalling pathway,, Molecular BioSystems, 2 (2006), 640.   Google Scholar

show all references

References:
[1]

M. Bentele, I. Lavrik, M. Ulrich, S. Stosser, D. W. Heermann, H. Kalthoff, P. H. Krammer and R. Eils, Mathematical modeling reveals threshold mechanism in cd95-induced apoptosis,, The Journal of Cell Biology, 166 (2004), 839.  doi: 10.1083/jcb.200404158.  Google Scholar

[2]

J. J. Cruz, Feedback Systems,, McGraw-Hill, (1972).   Google Scholar

[3]

B. C. Daniels, Y. J. Chen, J. P. Sethna, R. N. Gutenkunst and C. R. Myers, Sloppiness, robustness, and evolvability in systems biology,, Curr. Opin. Biotech., 19 (2008), 389.  doi: 10.1016/j.copbio.2008.06.008.  Google Scholar

[4]

A. F. Emery and A. V. Nenarokomov, Optimal experiment design,, Meas. Sci. Technol., 9 (1998), 864.  doi: 10.1088/0957-0233/9/6/003.  Google Scholar

[5]

B. Hat, K. Puszynski and T. Lipniacki, Exploring mechanisms of oscillations in p53 and nuclear factor-$\kappa$B systems,, IET Systems Biology, 3 (2009), 342.  doi: 10.1049/iet-syb.2008.0156.  Google Scholar

[6]

P. Iglesias and B. Ingalls, eds., Control Theory and Systems Biology,, MIT Press, (2010).   Google Scholar

[7]

A. E. C. Ihekwaba, D. S. Broomhead, R. L. Grimley, N. Benson and D. B. Kell, Sensitivity analysis of parameters controlling oscillatory signalling in the NF-kB pathway: the roles of IKK and IkBa,, IEE Syst. Biol., 1 (2004), 93.   Google Scholar

[8]

K. A. Kim, S. L. Spencer, J. G. Albeck, J. M. Burke, P. K. Sorger, S. Gaudet and H. Kim do, Systematic calibration of a cell signaling network model,, BMC Bioinformatics, 11 (2010).  doi: 10.1186/1471-2105-11-202.  Google Scholar

[9]

G. Koh and D-Y. Lee, Mathematical modeling and sensitivity analysis of the integrated TNF -mediated apoptotic pathway for identifying key regulators,, Computers in Biology and Medicine, 41 (2011), 512.   Google Scholar

[10]

M. Komorowski, M. J. Costa, D. A. Rand and M. P. H. Stumpf, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models,, PNAS, 108 (2011), 8645.  doi: 10.1073/pnas.1015814108.  Google Scholar

[11]

J. Leis and M. Kramer, Sensitivity analysis of systems of differential and algebraic equations,, Computers & Chemical Engineering, 9 (1985), 93.  doi: 10.1016/0098-1354(85)87008-3.  Google Scholar

[12]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[13]

A. Marin-Sanguino, S. K. Gupta, E. O. Voit and J. Vera, Biochemical pathway modeling tools for drug target detection in cancer and other complex diseases,, Methods in Enzymology, 487 (2011), 319.  doi: 10.1016/B978-0-12-381270-4.00011-1.  Google Scholar

[14]

D. A. Rand, Mapping the global sensitivity of cellular network dynamics,, J. R. Soc Interface, 5 (2008).   Google Scholar

[15]

M. Rathinam, P. W. Sheppard and M. Khammash, Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks,, Journal of Chemical Physics, 132 (2010).  doi: 10.1063/1.3280166.  Google Scholar

[16]

N. A. W. van Riel, Dynamic modelling and analysis of biochemical networks: Mechanism-based models and model-based experiments,, Briefings in Bioinformatics, 7 (2006), 364.   Google Scholar

[17]

A. Saltelli, M. Ratto, S. Tarantola and F. Campolongo, Sensitivity analysis for chemical models,, Chem. Rev., 105 (2005), 2811.  doi: 10.1021/cr040659d.  Google Scholar

[18]

A. Saltelli, M. Ratto, S. Tarantola and F. Campolongo, Sensitivity analysis practices: Strategies for model-based inference,, Reliability Engineering and System Safety, 91 (2006), 1109.  doi: 10.1016/j.ress.2005.11.014.  Google Scholar

[19]

S.-Y. Shin, S.-M. Choo, S.-H. Woo and K.-H. Cho, Cardiac systems biology and parameter sensitivity analysis: Intracellular $Ca^{2+}$ regulatory mechanisms in mouse ventricular myocytes,, Adv Biochem Engin/Biotechnol, 110 (2008), 25.   Google Scholar

[20]

R. G. P. M. van Stiphout, N. A. W. van Riel, P. J. Verhoog, P. A. J. Hilbers, K. Nicolay and J. A. L. Jeneson, Computational model of excitable cell indicates ATP free energy dynamics in response to calcium oscillations are undampened by cytosolic ATP buffers,, IEE Syst. Biol., 153 (2006), 405.   Google Scholar

[21]

M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks,, Proc. Natl Acad. Sci., 98 (2001), 8614.  doi: 10.1073/pnas.151588598.  Google Scholar

[22]

H. Yue, M. Brown, J. Knowles, H. Wang, D. S. Broomhead and D. B. Kell, Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: A case study of an nf-kappab signalling pathway,, Molecular BioSystems, 2 (2006), 640.   Google Scholar

[1]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[2]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[5]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[8]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[13]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (2)

[Back to Top]