Citation: |
[1] |
A. Bergqvist, Magnetic vector hysteresis model with dry friction-like pinning, Physica B: Condensed Matter, 233 (1997), 342-347.doi: 10.1016/S0921-4526(97)00319-0. |
[2] |
J. F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects, Springer-Verlag, Berlin, 2006. |
[3] |
K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM Publications Classics in Applied Mathematics, 1996. |
[4] |
M. Brokate, Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ, Peter Lang GmbH, 1987. |
[5] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, 1996.doi: 10.1007/978-1-4612-4048-8. |
[6] |
M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality, Discrete and Continuous Dynamical Systems - Series B, 18 (2013), 331-348.doi: 10.3934/dcdsb.2013.18.331. |
[7] |
H. S. Chung, R. D. Weaver and T. L. Friesz, Oligopolies in pollution permit markets: A dynamic game approach, International Journal of Production Economics, 140 (2012), 48-56.doi: 10.1016/j.ijpe.2012.01.017. |
[8] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, 1983. |
[9] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, 1998. |
[10] |
G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 19 (2012), 117-159. |
[11] |
B. Dacorogna, Direct methods in the calculus of variations, vol. 78, Springer, 2008. |
[12] |
G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in finite elasticity, Arch. Ration. Mech. Anal., 176 (2005), 165-225. |
[13] |
T. Donchev, E. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, Journal of Differential Equations, 243 (2007), 301-328.doi: 10.1016/j.jde.2007.05.011. |
[14] |
A. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets, SIAM Journal on Optimization, 6 (1996), 1087-1105.doi: 10.1137/S1052623495284029. |
[15] |
J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Mathematical Programming, Series B, 104 (2005), 347-373.doi: 10.1007/s10107-005-0619-y. |
[16] |
E. Emmrich, Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems, Preprint series of the Institute of Mathematics, Technische Universität Berlin, 637. |
[17] |
A. D. Ioffe and J. Outrata, On metric and calmness qualification conditions in subdifferential calculus, Set-Valued Analysis, 16 (2008), 199-227.doi: 10.1007/s11228-008-0076-x. |
[18] |
M. Kočvara, M. Kružík and J. Outrata, On the control of an evolutionary equilibrium in micromagnetics, in Optimization with Multivalued Mappings, (eds. S. Dempe and V. Kalashnikov), 2 of Springer Optimization and Its Applications, Springer, 2006, 143-168.doi: 10.1007/0-387-34221-4_8. |
[19] |
P. Krejčí and J. Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity, Appl. Math, 43 (1998), 173-205.doi: 10.1023/A:1023224507448. |
[20] |
P. Krejčí and A. Vladimirov, Lipschitz continuity of polyhedral Skorokhod maps, Zeitschrift für Analysis und Ihre Anwendungen, 20 (2000), 817-844.doi: 10.4171/ZAA/1047. |
[21] |
P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators, in Nonlinear differential equations, (eds. P. Drábek, P. Krejčí and P. Takáč), 1999, 47-110. |
[22] |
A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-Newton methods, Mathematical Programming, 1-29. doi: 10.1007/s10107-012-0514-2. |
[23] |
S. Lu and S. Robinson, Normal fans of polyhedral convex sets, Set-Valued Analysis, 16 (2008), 281-305.doi: 10.1007/s11228-008-0077-9. |
[24] |
Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, 1996.doi: 10.1017/CBO9780511983658. |
[25] |
B. Maury and J. Venel, A discrete contact model for crowd motion, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 145-168.doi: 10.1051/m2an/2010035. |
[26] |
Y. Moon, T. Yao and T. L. Friesz, Dynamic pricing and inventory policies: A strategic analysis of dual channel supply chain design, Service Science, 2 (2010), 196-215.doi: 10.1287/serv.2.3.196. |
[27] |
B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, Journal of Mathematical Analysis and Applications, 183 (1994), 250-288.doi: 10.1006/jmaa.1994.1144. |
[28] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, II, Springer, 2006. |
[29] |
J. J. Moreau, On unilateral constraints, friction and plasticity, in New Variational Techniques in Mathematical Physics, (eds. G. Capriz and G. Stampacchia), C.I.M.E. Summer Schools, Springer Berlin Heidelberg, 1974, 171-322. |
[30] |
J. Outrata, M. Kočvara and J. Zowe, Nonsmooth approach to Optimization Problems with Equilibrium Constraints, Kluwer Academic Publishers, Boston, 1998.doi: 10.1007/978-1-4757-2825-5. |
[31] |
J.-S. Pang and D. E. Stewart, Differential variational inequalities, Mathematical Programming, Series A, 113 (2008), 345-424.doi: 10.1007/s10107-006-0052-x. |
[32] |
R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. Henri Poincaré, 2 (1985), 167-184. |
[33] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, 1998.doi: 10.1007/978-3-642-02431-3. |
[34] |
H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2 (1992), 121-152.doi: 10.1137/0802008. |
[35] |
A. Skajaa, Limited Memory BFGS for Nonsmooth Optimization, Master thesis, Courant Institute of Mathematical Science, New York University, 2010. |
[36] |
A. Tasora, M. Anitescu, S. Negrini and D. Negrut, A compliant visco-plastic particle contact model based on differential variational inequalities, International Journal of Non-Linear Mechanics, 53 (2013), 2-12.doi: 10.1016/j.ijnonlinmec.2013.01.010. |
[37] |
L. Thibault, Sweeping process with regular and nonregular sets, Journal of Differential Equations, 193 (2003), 1-26.doi: 10.1016/S0022-0396(03)00129-3. |
[38] |
J. Venel, A numerical scheme for a class of sweeping processes, Numerische Mathematik, 118 (2011), 367-400.doi: 10.1007/s00211-010-0329-0. |
[39] |
A. Visintin, Differential Models of Hysteresis, Springer, 1994.doi: 10.1007/978-3-662-11557-2. |