November  2014, 19(9): 2739-2766. doi: 10.3934/dcdsb.2014.19.2739

Transport semigroup associated to positive boundary conditions of unit norm: A Dyson-Phillips approach

1. 

Università degli Studi di Udine, Dipartimento di Ingegneria Civile, via delle Scienze 208, 33100 Udine, Italy

2. 

Università degli Studi di Torino & Collegio Carlo Alberto, Department of Economics and Statistics, Corso Unione Sovietica, 218/bis, 10134 Torino, Italy

Received  November 2013 Revised  May 2014 Published  September 2014

We revisit our study of general transport operator with general force field and general invariant measure by considering, in the $L^1$ setting, the linear transport operator $\mathcal{T}_H$ associated to a linear and positive boundary operator $H$ of unit norm. It is known that in this case an extension of $\mathcal{T}_H$ generates a substochastic (i.e. positive contraction) $C_0$-semigroup $(V_H(t))_{t\geq 0}$. We show here that $(V_H(t))_{t\geq 0}$ is the smallest substochastic $C_0$-semigroup with the above mentioned property and provides a representation of $(V_H(t))_{t \geq 0}$ as the sum of an expansion series similar to Dyson-Phillips series. We develop an honesty theory for such boundary perturbations that allows to consider the honesty of trajectories on subintervals $J \subseteq [0,\infty)$. New necessary and sufficient conditions for a trajectory to be honest are given in terms of the aforementioned series expansion.
Citation: Luisa Arlotti, Bertrand Lods. Transport semigroup associated to positive boundary conditions of unit norm: A Dyson-Phillips approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2739-2766. doi: 10.3934/dcdsb.2014.19.2739
References:
[1]

L. Arlotti, J. Banasiak and B. Lods, A new approach to transport equations associated to a regular field: trace results and well-posedness,, Mediterr. J. Math., 6 (2009), 367.  doi: 10.1007/s00009-009-0022-7.  Google Scholar

[2]

L. Arlotti, J. Banasiak and B. Lods, On general transport equations with abstract boundary conditions. The case of divergence free force field,, Mediterr. J. Math., 8 (2011), 1.  doi: 10.1007/s00009-010-0061-0.  Google Scholar

[3]

L. Arlotti, Explicit transport semigroup associated to abstract boundary conditions,, Discrete Contin. Dyn. Syst., I (2011), 102.   Google Scholar

[4]

L. Arlotti, Boundary conditions for streaming operator in a bounded convex body,, Transp. Theory Stat. Phys., 15 (1986), 959.  doi: 10.1080/00411458608212725.  Google Scholar

[5]

L. Arlotti and B. Lods, Substochastic semigroups for transport equations with conservative boundary conditions,, J. Evolution Equations, 5 (2005), 485.  doi: 10.1007/s00028-005-0209-8.  Google Scholar

[6]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457.  doi: 10.4171/ZAA/1444.  Google Scholar

[7]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, Commun. Pure Appl. Anal., 13 (2014), 729.  doi: 10.3934/cpaa.2014.13.729.  Google Scholar

[8]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic once integrated semigroups in abstract state spaces,, in preparation., ().   Google Scholar

[9]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications,, Springer Monographs in Mathematics, (2006).   Google Scholar

[10]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation, application à l'équation de transport,, Ann. Sci. École Norm. Sup., 3 (1970), 185.   Google Scholar

[11]

R. Beals and V. Protopopescu, Abstract time-dependent transport equations,, J. Math. Anal. Appl., 121 (1987), 370.  doi: 10.1016/0022-247X(87)90252-6.  Google Scholar

[12]

M. Boulanouar, New results in abstract time-dependent transport equations,, Transport Theory Statist. Phys., 40 (2011), 85.  doi: 10.1080/00411450.2011.603402.  Google Scholar

[13]

C. Cercignani, The Boltzmann Equation and its Applications,, Springer Verlag, (1988).  doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[14]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[15]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II,, Berlin, (2000).  doi: 10.1007/978-3-642-58004-8.  Google Scholar

[16]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[17]

B. Lods, Semigroup generation properties of streaming operators with noncontractive boundary conditions,, Math. Comput. Modelling, 42 (2005), 1441.  doi: 10.1016/j.mcm.2004.12.007.  Google Scholar

[18]

M. Mokhtar-Kharroubi, On collisionless transport semigroups with boundary operators of norm one,, J. Evolution Equations, 8 (2008), 327.  doi: 10.1007/s00028-007-0360-5.  Google Scholar

[19]

M. Mokhtar-Kharroubi and J.Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Theory, 64 (2010), 131.   Google Scholar

[20]

J. Voigt, Functional Analytic Treatment of the Initial Boundary Value for Collisionless Gases,, München, (1981).   Google Scholar

show all references

References:
[1]

L. Arlotti, J. Banasiak and B. Lods, A new approach to transport equations associated to a regular field: trace results and well-posedness,, Mediterr. J. Math., 6 (2009), 367.  doi: 10.1007/s00009-009-0022-7.  Google Scholar

[2]

L. Arlotti, J. Banasiak and B. Lods, On general transport equations with abstract boundary conditions. The case of divergence free force field,, Mediterr. J. Math., 8 (2011), 1.  doi: 10.1007/s00009-010-0061-0.  Google Scholar

[3]

L. Arlotti, Explicit transport semigroup associated to abstract boundary conditions,, Discrete Contin. Dyn. Syst., I (2011), 102.   Google Scholar

[4]

L. Arlotti, Boundary conditions for streaming operator in a bounded convex body,, Transp. Theory Stat. Phys., 15 (1986), 959.  doi: 10.1080/00411458608212725.  Google Scholar

[5]

L. Arlotti and B. Lods, Substochastic semigroups for transport equations with conservative boundary conditions,, J. Evolution Equations, 5 (2005), 485.  doi: 10.1007/s00028-005-0209-8.  Google Scholar

[6]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457.  doi: 10.4171/ZAA/1444.  Google Scholar

[7]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, Commun. Pure Appl. Anal., 13 (2014), 729.  doi: 10.3934/cpaa.2014.13.729.  Google Scholar

[8]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic once integrated semigroups in abstract state spaces,, in preparation., ().   Google Scholar

[9]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications,, Springer Monographs in Mathematics, (2006).   Google Scholar

[10]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation, application à l'équation de transport,, Ann. Sci. École Norm. Sup., 3 (1970), 185.   Google Scholar

[11]

R. Beals and V. Protopopescu, Abstract time-dependent transport equations,, J. Math. Anal. Appl., 121 (1987), 370.  doi: 10.1016/0022-247X(87)90252-6.  Google Scholar

[12]

M. Boulanouar, New results in abstract time-dependent transport equations,, Transport Theory Statist. Phys., 40 (2011), 85.  doi: 10.1080/00411450.2011.603402.  Google Scholar

[13]

C. Cercignani, The Boltzmann Equation and its Applications,, Springer Verlag, (1988).  doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[14]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[15]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II,, Berlin, (2000).  doi: 10.1007/978-3-642-58004-8.  Google Scholar

[16]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[17]

B. Lods, Semigroup generation properties of streaming operators with noncontractive boundary conditions,, Math. Comput. Modelling, 42 (2005), 1441.  doi: 10.1016/j.mcm.2004.12.007.  Google Scholar

[18]

M. Mokhtar-Kharroubi, On collisionless transport semigroups with boundary operators of norm one,, J. Evolution Equations, 8 (2008), 327.  doi: 10.1007/s00028-007-0360-5.  Google Scholar

[19]

M. Mokhtar-Kharroubi and J.Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Theory, 64 (2010), 131.   Google Scholar

[20]

J. Voigt, Functional Analytic Treatment of the Initial Boundary Value for Collisionless Gases,, München, (1981).   Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[7]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[8]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[9]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[10]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[17]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]