November  2014, 19(9): 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds

1. 

Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche, I-60131, Ancona, Italy

Received  December 2013 Revised  April 2014 Published  September 2014

The present research paper proposes an extension of the classical scalar Auto-Regressive Moving-Average (ARMA) model to real-valued Riemannian matrix manifolds. The resulting ARMA model on matrix manifolds is expressed as a non-linear discrete-time dynamical system in state-space form whose state evolves on the tangent bundle associated with the underlying manifold. A number of examples are discussed within the present contribution that aim at illustrating the numerical behavior of the proposed ARMA model. In order to measure the degree of temporal dependency between the state-values of the ARMA model, an extension of the classical autocorrelation function for scalar sequences is suggested on the basis of the geometrical features of the underlying real-valued matrix manifold.
Citation: Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785
References:
[1]

S.-i. Amari, Differential geometry of a parametric family of invertible linear systems - Riemannian metric, dual affine connections, and divergence,, Mathematical Systems Theory, 20 (1987), 53.  doi: 10.1007/BF01692059.  Google Scholar

[2]

S.-i. Amari, Natural gradient learning for over- and under-complete bases in ICA,, Neural Computation, 11 (1989), 1875.  doi: 10.1162/089976699300015990.  Google Scholar

[3]

T. W. Anderson, I. Olkin and L. G. Underhill, Generation of random orthogonal matrices,, SIAM Journal on Scientific and Statistical Computing, 8 (1987), 625.  doi: 10.1137/0908055.  Google Scholar

[4]

Y. K. Baik, J. Kwon, H. S. Lee and K. M. Lee, Geometric particle swarm optimization for robust visual ego-motion estimation via particle filtering,, Image and Vision Computing, 31 (2013), 565.  doi: 10.1016/j.imavis.2013.04.004.  Google Scholar

[5]

T. Bollerslev, Generalized autoregressive conditional heteroskedasticity,, Journal of Econometrics, 31 (1986), 307.  doi: 10.1016/0304-4076(86)90063-1.  Google Scholar

[6]

P. Brockwell and R. Davis, Time Series: Theory and Methods,, $2^{nd}$ Edition, (2009).  doi: 10.1007/978-1-4419-0320-4.  Google Scholar

[7]

E. Celledoni and S. Fiori, Neural learning by geometric integration of reduced 'rigid-body' equations,, Journal of Computational and Applied Mathematics, 172 (2004), 247.  doi: 10.1016/j.cam.2004.02.007.  Google Scholar

[8]

Y. Chen and J. E. McInroy, Estimation of symmetric positive-definite matrices from imperfect measurements,, IEEE Transactions on Automatic Control, 47 (2002), 1721.  doi: 10.1109/TAC.2002.803545.  Google Scholar

[9]

G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4803-9.  Google Scholar

[10]

P. Chossat and O. Faugeras, Hyperbolic planforms in relation to visual edges and textures perception,, PLoS Computational Biology, 5 (2009).  doi: 10.1371/journal.pcbi.1000625.  Google Scholar

[11]

P. I. Davies and N. J. Higham, Numerically stable generation of correlation matrices and their factors,, BIT, 40 (2000), 640.  doi: 10.1023/A:1022384216930.  Google Scholar

[12]

P. Diaconis and M. Shahshahamni, The subgroup algorithm for generating uniform random variables,, Probability in Engineering and Informational Sciences, 1 (1987), 15.  doi: 10.1017/S0269964800000255.  Google Scholar

[13]

A. Edelman, T. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints,, SIAM Journal on Matrix Analysis Applications, 20 (1998), 303.  doi: 10.1137/S0895479895290954.  Google Scholar

[14]

L. Eldén and H. Park, A Procrustes problem on the Stiefel manifold,, Numerical Mathematics, 82 (1999), 599.  doi: 10.1007/s002110050432.  Google Scholar

[15]

S. Fiori, A fast fixed-point neural blind deconvolution algorithm,, IEEE Transactions on Neural Networks, 15 (2004), 455.  doi: 10.1109/TNN.2004.824258.  Google Scholar

[16]

S. Fiori, Blind adaptation of stable discrete-time IIR filters in state-space form,, IEEE Transactions on Signal Processing, 54 (2006), 2596.  doi: 10.1109/TSP.2006.874807.  Google Scholar

[17]

S. Fiori, Geodesic-based and projection-based neural blind deconvolution algorithms,, Signal Processing, 88 (2008), 521.  doi: 10.1016/j.sigpro.2007.08.014.  Google Scholar

[18]

S. Fiori, Learning the Fréchet mean over the manifold of symmetric positive-definite matrices,, Cognitive Computation, 1 (2009), 279.  doi: 10.1007/s12559-009-9026-7.  Google Scholar

[19]

S. Fiori, Blind deconvolution by a Newton method on the non-unitary hypersphere,, International Journal of Adaptive Control and Signal Processing, 27 (2013), 488.  doi: 10.1002/acs.2324.  Google Scholar

[20]

G. Fonseca, On the Stability of Nonlinear ARMA Mmodels,, Technical report 2005/03, (2005).   Google Scholar

[21]

A. Genz, Methods for Generating Random Orthogonal Matrices,, in Monte Carlo and Quasi-Monte Carlo Methods 1998, (1998), 199.   Google Scholar

[22]

W. Gonzalez-Manteiga, G. Henry and D. Rodriguez, Partly linear models on Riemannian manifolds,, Journal of Applied Statistics, 39 (2012), 1797.  doi: 10.1080/02664763.2012.683169.  Google Scholar

[23]

R. Harman and V. Lacko, On decompositional algorithms for uniform sampling from $n$-spheres and $n$-balls,, Journal of Multivariate Analysis, 101 (2010), 2297.  doi: 10.1016/j.jmva.2010.06.002.  Google Scholar

[24]

J. L. Harvill and B. K. Ray, An investigation of lag identification tools for vector nonlinear time series,, Communications in Statistics - Theory and Methods, 29 (2000), 1677.  doi: 10.1080/03610920008832573.  Google Scholar

[25]

N. J. Higham, Functions of Matrices: Theory and Computation,, SIAM, (2008).  doi: 10.1137/1.9780898717778.  Google Scholar

[26]

T. Kaneko, S. Fiori and T. Tanaka, Empirical arithmetic averaging over the compact Stiefel manifold,, IEEE Transactions on Signal Processing, 61 (2013), 883.  doi: 10.1109/TSP.2012.2226167.  Google Scholar

[27]

R. Lenz, R. Mochizuki and J. Chao, Iwasawa decomposition and computational Riemannian geometry,, in Proceedings of the $20^{th}$ International Conference on Pattern Recognition (ICPR), (2010), 4472.  doi: 10.1109/ICPR.2010.1086.  Google Scholar

[28]

N. L. Lim, Clustering and Sampling Algorithms on Shape Manifolds,, Technical report of the Bio-Informatics Institute (Biopolis, (2012).   Google Scholar

[29]

G. Meyer, Regression on fixed-rank positive semidefinite matrices: A Riemannian approach,, Journal of Machine Learning Research, 12 (2011), 593.   Google Scholar

[30]

F. Mezzadri, How to generate random matrices from the classical compact groups,, Notices of the AMS, 54 (2007), 592.   Google Scholar

[31]

J. Navarro-Moreno, ARMA prediction of widely linear systems by using the innovations algorithm,, IEEE Transactions on Signal Processing, 56 (2008), 3061.  doi: 10.1109/TSP.2008.919396.  Google Scholar

[32]

D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach,, Econometrica, 59 (1991), 347.  doi: 10.2307/2938260.  Google Scholar

[33]

P. Pajunen and M. Girolami, Implementing decisions in binary decision trees using independent component analysis,, in Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation (Helsinki, (2000), 477.   Google Scholar

[34]

F. L. Ramsey, Characterization of the partial autocorrelation function,, The Annals of Statistics, 2 (1974), 1296.  doi: 10.1214/aos/1176342881.  Google Scholar

[35]

H. Shimazaki, S.-i. Amari, E. N. Brown and S. Grün, State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data,, PLoS Computional Biology, 8 (2012).  doi: 10.1371/journal.pcbi.1002385.  Google Scholar

[36]

M. Spivak, A Comprehensive Introduction to Differential Geometry,, 1, (1979).   Google Scholar

[37]

G. C. Tiao and R. S. Tsay, Model specification in multivariate time series,, Journal of Royal Statistical Society, 51 (1989), 157.   Google Scholar

[38]

H. Tidefelt and T. B. Schön, Robust point-mass filters on manifold,, in Proceedings of the $15^{th}$ IFAC Symposium on System Identification (SYSID, (2009), 1.   Google Scholar

[39]

N. T. Trendafilov and R. A. Lippert, The multimode Procrustes problem,, Linear Algebra and iIts Applications, 349 (2002), 245.  doi: 10.1016/S0024-3795(02)00253-7.  Google Scholar

[40]

P. Turaga, A. Veeraraghavan and R. Chellappa, Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008, (2008), 1.  doi: 10.1109/CVPR.2008.4587733.  Google Scholar

[41]

P. A. Valdes-Sosa, Spatio-temporal autoregressive models defined over brain manifolds,, Neuroinformatics, 2 (2004), 239.  doi: 10.1385/NI:2:2:239.  Google Scholar

[42]

J. F. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira and B. Cardeira, Geometric approach to strapdown magnetometer calibration in sensor frame,, IEEE Transactions on Aerospace and Electronic Systems, 47 (2011), 1293.  doi: 10.1109/TAES.2011.5751259.  Google Scholar

[43]

A. Veeraraghavan, A. K. Roy-Chowdhury and R. Chellappa, Matching shape sequences in video with applications in human movement analysis,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (2005), 1896.  doi: 10.1109/TPAMI.2005.246.  Google Scholar

[44]

N. Wessel, H. Malberg, R. Bauernschmitt, A. Schirdewan and J. Kurths, Nonlinear additive autoregressive model-based analysis of short-term heart rate variability,, Medical and Biological Engineering and Computing, 44 (2006), 321.  doi: 10.1007/s11517-006-0038-0.  Google Scholar

[45]

A. Yershova and S. M. LaValle, Deterministic sampling methods for spheres and $SO(3)$,, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2004, 4 (2004), 3974.  doi: 10.1007/s004539910020.  Google Scholar

[46]

F. Yger, M. Berar, G. Gasso and A. Rakotomamonjy, Oblique principal subspace tracking on manifold,, in Proceedings of the 2012 IEEE International Conference on Acoustics, (2012), 2429.  doi: 10.1109/ICASSP.2012.6288406.  Google Scholar

[47]

J. Yoo and S. Choi, Orthogonal nonnegative matrix factorization: multiplicative updates on Stiefel manifolds,, in Proceedings of the Intelligent Data Engineering and Automated Learning (IDEAL 2008), (2008), 140.  doi: 10.1007/978-3-540-88906-9_18.  Google Scholar

[48]

Y. Zhu, W. Mio and X. Liu, Optimal dimension reduction for image retrieval with correlation metrics,, in Proceedings of the International Conference on Neural Networks (IJCNN 2009, (2009), 3565.  doi: 10.1109/IJCNN.2009.5179020.  Google Scholar

show all references

References:
[1]

S.-i. Amari, Differential geometry of a parametric family of invertible linear systems - Riemannian metric, dual affine connections, and divergence,, Mathematical Systems Theory, 20 (1987), 53.  doi: 10.1007/BF01692059.  Google Scholar

[2]

S.-i. Amari, Natural gradient learning for over- and under-complete bases in ICA,, Neural Computation, 11 (1989), 1875.  doi: 10.1162/089976699300015990.  Google Scholar

[3]

T. W. Anderson, I. Olkin and L. G. Underhill, Generation of random orthogonal matrices,, SIAM Journal on Scientific and Statistical Computing, 8 (1987), 625.  doi: 10.1137/0908055.  Google Scholar

[4]

Y. K. Baik, J. Kwon, H. S. Lee and K. M. Lee, Geometric particle swarm optimization for robust visual ego-motion estimation via particle filtering,, Image and Vision Computing, 31 (2013), 565.  doi: 10.1016/j.imavis.2013.04.004.  Google Scholar

[5]

T. Bollerslev, Generalized autoregressive conditional heteroskedasticity,, Journal of Econometrics, 31 (1986), 307.  doi: 10.1016/0304-4076(86)90063-1.  Google Scholar

[6]

P. Brockwell and R. Davis, Time Series: Theory and Methods,, $2^{nd}$ Edition, (2009).  doi: 10.1007/978-1-4419-0320-4.  Google Scholar

[7]

E. Celledoni and S. Fiori, Neural learning by geometric integration of reduced 'rigid-body' equations,, Journal of Computational and Applied Mathematics, 172 (2004), 247.  doi: 10.1016/j.cam.2004.02.007.  Google Scholar

[8]

Y. Chen and J. E. McInroy, Estimation of symmetric positive-definite matrices from imperfect measurements,, IEEE Transactions on Automatic Control, 47 (2002), 1721.  doi: 10.1109/TAC.2002.803545.  Google Scholar

[9]

G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4803-9.  Google Scholar

[10]

P. Chossat and O. Faugeras, Hyperbolic planforms in relation to visual edges and textures perception,, PLoS Computational Biology, 5 (2009).  doi: 10.1371/journal.pcbi.1000625.  Google Scholar

[11]

P. I. Davies and N. J. Higham, Numerically stable generation of correlation matrices and their factors,, BIT, 40 (2000), 640.  doi: 10.1023/A:1022384216930.  Google Scholar

[12]

P. Diaconis and M. Shahshahamni, The subgroup algorithm for generating uniform random variables,, Probability in Engineering and Informational Sciences, 1 (1987), 15.  doi: 10.1017/S0269964800000255.  Google Scholar

[13]

A. Edelman, T. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints,, SIAM Journal on Matrix Analysis Applications, 20 (1998), 303.  doi: 10.1137/S0895479895290954.  Google Scholar

[14]

L. Eldén and H. Park, A Procrustes problem on the Stiefel manifold,, Numerical Mathematics, 82 (1999), 599.  doi: 10.1007/s002110050432.  Google Scholar

[15]

S. Fiori, A fast fixed-point neural blind deconvolution algorithm,, IEEE Transactions on Neural Networks, 15 (2004), 455.  doi: 10.1109/TNN.2004.824258.  Google Scholar

[16]

S. Fiori, Blind adaptation of stable discrete-time IIR filters in state-space form,, IEEE Transactions on Signal Processing, 54 (2006), 2596.  doi: 10.1109/TSP.2006.874807.  Google Scholar

[17]

S. Fiori, Geodesic-based and projection-based neural blind deconvolution algorithms,, Signal Processing, 88 (2008), 521.  doi: 10.1016/j.sigpro.2007.08.014.  Google Scholar

[18]

S. Fiori, Learning the Fréchet mean over the manifold of symmetric positive-definite matrices,, Cognitive Computation, 1 (2009), 279.  doi: 10.1007/s12559-009-9026-7.  Google Scholar

[19]

S. Fiori, Blind deconvolution by a Newton method on the non-unitary hypersphere,, International Journal of Adaptive Control and Signal Processing, 27 (2013), 488.  doi: 10.1002/acs.2324.  Google Scholar

[20]

G. Fonseca, On the Stability of Nonlinear ARMA Mmodels,, Technical report 2005/03, (2005).   Google Scholar

[21]

A. Genz, Methods for Generating Random Orthogonal Matrices,, in Monte Carlo and Quasi-Monte Carlo Methods 1998, (1998), 199.   Google Scholar

[22]

W. Gonzalez-Manteiga, G. Henry and D. Rodriguez, Partly linear models on Riemannian manifolds,, Journal of Applied Statistics, 39 (2012), 1797.  doi: 10.1080/02664763.2012.683169.  Google Scholar

[23]

R. Harman and V. Lacko, On decompositional algorithms for uniform sampling from $n$-spheres and $n$-balls,, Journal of Multivariate Analysis, 101 (2010), 2297.  doi: 10.1016/j.jmva.2010.06.002.  Google Scholar

[24]

J. L. Harvill and B. K. Ray, An investigation of lag identification tools for vector nonlinear time series,, Communications in Statistics - Theory and Methods, 29 (2000), 1677.  doi: 10.1080/03610920008832573.  Google Scholar

[25]

N. J. Higham, Functions of Matrices: Theory and Computation,, SIAM, (2008).  doi: 10.1137/1.9780898717778.  Google Scholar

[26]

T. Kaneko, S. Fiori and T. Tanaka, Empirical arithmetic averaging over the compact Stiefel manifold,, IEEE Transactions on Signal Processing, 61 (2013), 883.  doi: 10.1109/TSP.2012.2226167.  Google Scholar

[27]

R. Lenz, R. Mochizuki and J. Chao, Iwasawa decomposition and computational Riemannian geometry,, in Proceedings of the $20^{th}$ International Conference on Pattern Recognition (ICPR), (2010), 4472.  doi: 10.1109/ICPR.2010.1086.  Google Scholar

[28]

N. L. Lim, Clustering and Sampling Algorithms on Shape Manifolds,, Technical report of the Bio-Informatics Institute (Biopolis, (2012).   Google Scholar

[29]

G. Meyer, Regression on fixed-rank positive semidefinite matrices: A Riemannian approach,, Journal of Machine Learning Research, 12 (2011), 593.   Google Scholar

[30]

F. Mezzadri, How to generate random matrices from the classical compact groups,, Notices of the AMS, 54 (2007), 592.   Google Scholar

[31]

J. Navarro-Moreno, ARMA prediction of widely linear systems by using the innovations algorithm,, IEEE Transactions on Signal Processing, 56 (2008), 3061.  doi: 10.1109/TSP.2008.919396.  Google Scholar

[32]

D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach,, Econometrica, 59 (1991), 347.  doi: 10.2307/2938260.  Google Scholar

[33]

P. Pajunen and M. Girolami, Implementing decisions in binary decision trees using independent component analysis,, in Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation (Helsinki, (2000), 477.   Google Scholar

[34]

F. L. Ramsey, Characterization of the partial autocorrelation function,, The Annals of Statistics, 2 (1974), 1296.  doi: 10.1214/aos/1176342881.  Google Scholar

[35]

H. Shimazaki, S.-i. Amari, E. N. Brown and S. Grün, State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data,, PLoS Computional Biology, 8 (2012).  doi: 10.1371/journal.pcbi.1002385.  Google Scholar

[36]

M. Spivak, A Comprehensive Introduction to Differential Geometry,, 1, (1979).   Google Scholar

[37]

G. C. Tiao and R. S. Tsay, Model specification in multivariate time series,, Journal of Royal Statistical Society, 51 (1989), 157.   Google Scholar

[38]

H. Tidefelt and T. B. Schön, Robust point-mass filters on manifold,, in Proceedings of the $15^{th}$ IFAC Symposium on System Identification (SYSID, (2009), 1.   Google Scholar

[39]

N. T. Trendafilov and R. A. Lippert, The multimode Procrustes problem,, Linear Algebra and iIts Applications, 349 (2002), 245.  doi: 10.1016/S0024-3795(02)00253-7.  Google Scholar

[40]

P. Turaga, A. Veeraraghavan and R. Chellappa, Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008, (2008), 1.  doi: 10.1109/CVPR.2008.4587733.  Google Scholar

[41]

P. A. Valdes-Sosa, Spatio-temporal autoregressive models defined over brain manifolds,, Neuroinformatics, 2 (2004), 239.  doi: 10.1385/NI:2:2:239.  Google Scholar

[42]

J. F. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira and B. Cardeira, Geometric approach to strapdown magnetometer calibration in sensor frame,, IEEE Transactions on Aerospace and Electronic Systems, 47 (2011), 1293.  doi: 10.1109/TAES.2011.5751259.  Google Scholar

[43]

A. Veeraraghavan, A. K. Roy-Chowdhury and R. Chellappa, Matching shape sequences in video with applications in human movement analysis,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (2005), 1896.  doi: 10.1109/TPAMI.2005.246.  Google Scholar

[44]

N. Wessel, H. Malberg, R. Bauernschmitt, A. Schirdewan and J. Kurths, Nonlinear additive autoregressive model-based analysis of short-term heart rate variability,, Medical and Biological Engineering and Computing, 44 (2006), 321.  doi: 10.1007/s11517-006-0038-0.  Google Scholar

[45]

A. Yershova and S. M. LaValle, Deterministic sampling methods for spheres and $SO(3)$,, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2004, 4 (2004), 3974.  doi: 10.1007/s004539910020.  Google Scholar

[46]

F. Yger, M. Berar, G. Gasso and A. Rakotomamonjy, Oblique principal subspace tracking on manifold,, in Proceedings of the 2012 IEEE International Conference on Acoustics, (2012), 2429.  doi: 10.1109/ICASSP.2012.6288406.  Google Scholar

[47]

J. Yoo and S. Choi, Orthogonal nonnegative matrix factorization: multiplicative updates on Stiefel manifolds,, in Proceedings of the Intelligent Data Engineering and Automated Learning (IDEAL 2008), (2008), 140.  doi: 10.1007/978-3-540-88906-9_18.  Google Scholar

[48]

Y. Zhu, W. Mio and X. Liu, Optimal dimension reduction for image retrieval with correlation metrics,, in Proceedings of the International Conference on Neural Networks (IJCNN 2009, (2009), 3565.  doi: 10.1109/IJCNN.2009.5179020.  Google Scholar

[1]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[2]

Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021

[3]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[4]

Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098

[5]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[6]

Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173

[7]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[8]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[9]

Bo Tan, Bao-Wei Wang, Jun Wu, Jian Xu. Localized Birkhoff average in beta dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2547-2564. doi: 10.3934/dcds.2013.33.2547

[10]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[11]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[12]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[13]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[14]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[15]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[16]

Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041

[17]

Erchuan Zhang, Lyle Noakes. Riemannian cubics and elastica in the manifold $ \operatorname{SPD}(n) $ of all $ n\times n $ symmetric positive-definite matrices. Journal of Geometric Mechanics, 2019, 11 (2) : 277-299. doi: 10.3934/jgm.2019015

[18]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[19]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[20]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]