January  2014, 19(1): 281-298. doi: 10.3934/dcdsb.2014.19.281

Dirichlet series for dynamical systems of first-order ordinary differential equations

1. 

School of Mathematics & Physics, Qingdao University of Science & Technology, Qingdao 266061, China

2. 

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, United Kingdom

Received  August 2012 Revised  October 2013 Published  December 2013

In this paper, inspired by the work by A. Iserles and G. Söderlind [Global bounds on numerical error for ordinary differential equations, J. Complexity, 9 (1993), pp. 97-112], we present comprehensive discussion on Dirichlet series for dynamical systems of first-order ordinary differential equations (ODEs). We first derive the scheme of Dirichlet approximation for scalar dynamical systems and present the bounds on the terms of Dirichlet series. The global error and the right choice of a term in Dirichlet series are analysed and two numerical experiments are carried out to demonstrate the efficiency of Dirichlet approximation. Then we consider applying Dirichlet series to multivariate dynamical systems and present a new scheme of Dirichlet approximation for such systems. Some discussion and a numerical experiment are accordingly carried out for the new Dirichlet approximation. Compared with routine time-stepping algorithms, Dirichlet series does not need time stepping and yields a continuous solution that is equally valid along an interval, which is significant for obtaining long-time numerical solution. As a result of the special nature of Dirichlet series, the Dirichlet approximation delivers considerable information on dynamical systems of first-order ODEs and provides a novel and effective approach to numerical solutions of these dynamical systems.
Citation: Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281
References:
[1]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations,, 2nd ed., (2008).  doi: 10.1002/9780470753767.  Google Scholar

[2]

Y. Fang, Y. Song and X. Wu, New embedded pairs of explicit Runge-Kutta methods with FSAL properties adapted to the numerical integration of oscillatory problems,, Phys. Lett. A, 372 (2008), 6551.  doi: 10.1016/j.physleta.2008.09.014.  Google Scholar

[3]

A. B. González, P. Martín and J. M. Farto, A new family of Runge-Kutta type methods for the numerical integration of perturbed oscillators,, Numer. Math., 82 (1999), 635.  doi: 10.1007/s002110050434.  Google Scholar

[4]

E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method,, Acta Numer., 12 (2003), 399.  doi: 10.1017/S0962492902000144.  Google Scholar

[5]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems,, Springer-Verlag, (1993).   Google Scholar

[6]

G. H. Hardy and M. Riesz, The general theory of Dirichlet series,, Cambridge Tracts in Mathematics and Mathematical Physics, 18 (1964).   Google Scholar

[7]

M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilineal parabolic problems,, SIAM J. Numer. Anal., 43 (2005), 1069.  doi: 10.1137/040611434.  Google Scholar

[8]

A. Iserles, A First Course in the Numerical Analysis of Differential Equations,, 2nd ed., (2008).   Google Scholar

[9]

A. Iserles, G. P. Ramaswami and M. Sofroniou, Runge-Kutta methods for quadratic ordinary differential equations,, BIT, 38 (1998), 315.  doi: 10.1007/BF02512370.  Google Scholar

[10]

A. Iserles and G. Söderlind, Global bounds on numerical error for ordinary differential equations,, J. Complexity, 9 (1993), 97.  doi: 10.1006/jcom.1993.1007.  Google Scholar

[11]

A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods,, J. Comp. Appl. Maths., 125 (2000), 69.  doi: 10.1016/S0377-0427(00)00459-3.  Google Scholar

[12]

S. Mandelbrojt, Dirichlet Series: Principles and Methods,, D. Reidel Publishing Company, (1972).   Google Scholar

[13]

L. Perko, Differential Equations and Dynamical Systems,, 3rd ed., (2001).   Google Scholar

[14]

R. C. Robinson, An Introduction to Dynamical Systems: Countinuous and Discrete,, Pearson Prentice Hall, (2004).   Google Scholar

[15]

J. M. Sanz-Serna, Runge-Kutta schems for Hamiltonian systems,, BIT, 28 (1988), 877.  doi: 10.1007/BF01954907.  Google Scholar

[16]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Springer-Verlag, (1990).  doi: 10.1007/978-3-642-97149-5.  Google Scholar

show all references

References:
[1]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations,, 2nd ed., (2008).  doi: 10.1002/9780470753767.  Google Scholar

[2]

Y. Fang, Y. Song and X. Wu, New embedded pairs of explicit Runge-Kutta methods with FSAL properties adapted to the numerical integration of oscillatory problems,, Phys. Lett. A, 372 (2008), 6551.  doi: 10.1016/j.physleta.2008.09.014.  Google Scholar

[3]

A. B. González, P. Martín and J. M. Farto, A new family of Runge-Kutta type methods for the numerical integration of perturbed oscillators,, Numer. Math., 82 (1999), 635.  doi: 10.1007/s002110050434.  Google Scholar

[4]

E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method,, Acta Numer., 12 (2003), 399.  doi: 10.1017/S0962492902000144.  Google Scholar

[5]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems,, Springer-Verlag, (1993).   Google Scholar

[6]

G. H. Hardy and M. Riesz, The general theory of Dirichlet series,, Cambridge Tracts in Mathematics and Mathematical Physics, 18 (1964).   Google Scholar

[7]

M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilineal parabolic problems,, SIAM J. Numer. Anal., 43 (2005), 1069.  doi: 10.1137/040611434.  Google Scholar

[8]

A. Iserles, A First Course in the Numerical Analysis of Differential Equations,, 2nd ed., (2008).   Google Scholar

[9]

A. Iserles, G. P. Ramaswami and M. Sofroniou, Runge-Kutta methods for quadratic ordinary differential equations,, BIT, 38 (1998), 315.  doi: 10.1007/BF02512370.  Google Scholar

[10]

A. Iserles and G. Söderlind, Global bounds on numerical error for ordinary differential equations,, J. Complexity, 9 (1993), 97.  doi: 10.1006/jcom.1993.1007.  Google Scholar

[11]

A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods,, J. Comp. Appl. Maths., 125 (2000), 69.  doi: 10.1016/S0377-0427(00)00459-3.  Google Scholar

[12]

S. Mandelbrojt, Dirichlet Series: Principles and Methods,, D. Reidel Publishing Company, (1972).   Google Scholar

[13]

L. Perko, Differential Equations and Dynamical Systems,, 3rd ed., (2001).   Google Scholar

[14]

R. C. Robinson, An Introduction to Dynamical Systems: Countinuous and Discrete,, Pearson Prentice Hall, (2004).   Google Scholar

[15]

J. M. Sanz-Serna, Runge-Kutta schems for Hamiltonian systems,, BIT, 28 (1988), 877.  doi: 10.1007/BF01954907.  Google Scholar

[16]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Springer-Verlag, (1990).  doi: 10.1007/978-3-642-97149-5.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[11]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[12]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[13]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]