-
Previous Article
Global dynamics of a piece-wise epidemic model with switching vaccination strategy
- DCDS-B Home
- This Issue
-
Next Article
Stability criteria for SIS epidemiological models under switching policies
Stochastically perturbed sliding motion in piecewise-smooth systems
1. | Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand |
2. | Department of Mathematics, University of British Columbia, Vancouver, BC, Canada |
References:
[1] |
A. J. Van der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical Systems,, Springer-Verlag, (2000).
|
[2] |
R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-smooth Mechanical Systems, volume 18 of Lecture Notes in Applied and Computational Mathematics,, Springer-Verlag, (2004).
doi: 10.1007/978-3-540-44398-8. |
[3] |
S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics,, IEEE Press, (2001).
doi: 10.1109/9780470545393. |
[4] |
Z. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems,, World Scientific, (2003).
|
[5] |
T. Puu and I. Sushko, editors, Business Cycle Dynamics: Models and Tools,, Springer-Verlag, (2006). Google Scholar |
[6] |
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications,, Springer-Verlag, (2008).
|
[7] |
N. Berglund and B. Gentz, Noise-Induced Phenomena in Slow-Fast Dynamical Systems,, Springer, (2006).
|
[8] |
B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier, Effects of noise in excitable systems,, Phys. Reports, 392 (2004), 321.
doi: 10.1016/j.physrep.2003.10.015. |
[9] |
A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system,, Phys. Rev. Lett., 78 (1997), 775.
doi: 10.1103/PhysRevLett.78.775. |
[10] |
L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic resonance,, Rev. Modern Phys., 70 (1998), 223.
doi: 10.1103/RevModPhys.70.223. |
[11] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Kluwer Academic Publishers., (1988).
doi: 10.1007/978-94-015-7793-9. |
[12] |
M. Wiercigroch and B. De Kraker, Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities,, Singapore, (2000).
doi: 10.1142/9789812796301. |
[13] |
B. Brogliato, Nonsmooth Mechanics: Models, Dynamics and Control,, Springer-Verlag, (1999).
|
[14] |
B. Blazejczyk-Okolewska, K. Czolczynski, T. Kapitaniak and J. Wojewoda, Chaotic Mechanics in Systems with Impacts and Friction,, World Scientific, (1999).
doi: 10.1142/9789812798565. |
[15] |
J. Awrejcewicz and C. Lamarque, Bifurcation and Chaos in Nonsmooth Mechanical Systems,, World Scientific, (2003).
doi: 10.1142/9789812564801. |
[16] |
R. A. Ibrahim, Vibro-Impact Dynamics., volume 43 of Lecture Notes in Applied and Computational Mechanics,, Springer, (2009).
doi: 10.1007/978-3-642-00275-5. |
[17] |
C. K. Tse, Complex Behavior of Switching Power Converters,, CRC Press, (2003).
doi: 10.1109/JPROC.2002.1015006. |
[18] |
A. F. Filippov, Differential equations with discontinuous right-hand side., Mat. Sb., 51 (1960), 99.
|
[19] |
P. Casini, O. Giannini and F. Vestroni, Experimental evidence of non-standard bifurcations in non-smooth oscillator dynamics,, Nonlinear Dyn., 46 (2006), 259.
doi: 10.1007/s11071-006-9041-0. |
[20] |
A. C. J. Luo and B. C. Gegg, Stick and non-stick periodic motions in periodically forced oscillators with dry friction,, J. Sound Vib., 291 (2006), 132.
doi: 10.1016/j.jsv.2005.06.003. |
[21] |
M. Johansson, Piecewise Linear Control Systems., volume 284 of Lecture Notes in Control and Information Sciencesm, Springer-Verlag, (2003).
doi: 10.1007/3-540-36801-9. |
[22] |
M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations,, Int J. Bifurcation Chaos, 11 (2001), 1121.
doi: 10.1142/S0218127401002584. |
[23] |
Z. Schuss, Theory and Applications of Stochastic Differential Equations,, Wiley, (1980).
|
[24] |
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences,, Springer-Verlag, (1985).
|
[25] |
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems,, Springer, (2012).
doi: 10.1007/978-3-642-25847-3. |
[26] |
J. Grasman and O. A. van Herwaarden, Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications,, Springer, (1999).
doi: 10.1007/978-3-662-03857-4. |
[27] |
, Special Issue on Nonsmooth Systems,, Phys. D, 241 (2012). Google Scholar |
[28] |
M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke and G. Yuan, Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems,, Phys. Rev. Lett., 83 (1999), 4281.
doi: 10.1103/PhysRevLett.83.4281. |
[29] |
T. C. L. Griffin, Dynamics of Stochastic Nonsmooth Systems,, PhD thesis, (2005). Google Scholar |
[30] |
T. Griffin and S. Hogan, Dynamics of discontinuous systems with imperfections and noise,, in IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, (2005), 275.
doi: 10.1007/1-4020-3268-4_26. |
[31] |
P. Glendinning, The border collision normal form with stochastic switching surface,, SIAM J. Appl. Dyn. Sys., 13 (2014), 181.
doi: 10.1137/130931643. |
[32] |
M. A. Hassouneh, E. H. Abed and H. E. Nusse, Robust dangerous border-collision bifurcations in piecewise smooth systems,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.070201. |
[33] |
A. Ganguli and S. Banerjee, Dangerous bifurcation at border collision: When does it occur?,, Phys. Rev. E., 71 (2005).
doi: 10.1103/PhysRevE.71.057202. |
[34] |
Y. Do, A mechanism for dangerous border collision bifurcations,, Chaos Solitons Fractals, 32 (2007), 352.
doi: 10.1016/j.chaos.2006.07.018. |
[35] |
Y. Do and H. K. Baek, Dangerous border-collision bifurcations of a piecewise-smooth map,, Comm. Pure Appl. Anal., 5 (2006), 493.
doi: 10.3934/cpaa.2006.5.493. |
[36] |
R. Wackerbauer, Noise-induced stabilization of one-dimensional discontinuous maps,, Phys. Rev. E, 58 (1998), 3036. Google Scholar |
[37] |
L. Zhang, P. Shi, C. Wang and H. Gao, Robust $H_\infty$ filtering for switched linear discrete-time systems with polytopic uncertainties,, Int. J. Adapt. Control Signal Process, 20 (2006), 291.
doi: 10.1002/acs.901. |
[38] |
W. Zhang, J. Hu and J. Lian, Quadratic optimal control of switched linear stochastic systems,, Syst. Contr. Lett., 59 (2010), 736.
doi: 10.1016/j.sysconle.2010.08.010. |
[39] |
P. H. E. Tiesinga, Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons,, Phys. Rev. E, 65 (2002).
doi: 10.1103/PhysRevE.65.041913. |
[40] |
A. B. Nordmark, Non-periodic motion caused by grazing incidence in impact oscillators,, J. Sound Vib., 2 (1991), 279.
doi: 10.1016/0022-460X(91)90592-8. |
[41] |
H. Dankowicz and A. B. Nordmark, On the origin and bifurcations of stick-slip oscillations,, Phys. D, 136 (2000), 280.
doi: 10.1016/S0167-2789(99)00161-X. |
[42] |
M. H. Fredriksson and A. B. Nordmark, On normal form calculation in impact oscillators,, Proc. R. Soc. A, 456 (2000), 315.
doi: 10.1098/rspa.2000.0519. |
[43] |
M. di Bernardo, C. J. Budd and A. R. Champneys, Normal form maps for grazing bifurcations in $n$-dimensional piecewise-smooth dynamical systems,, Phys. D, 160 (2001), 222.
doi: 10.1016/S0167-2789(01)00349-9. |
[44] |
D. J. W. Simpson, J. Hogan and R. Kuske, Stochastic regular grazing bifurcations,, SIAM J. Appl. Dyn. Sys., 12 (2013), 533.
doi: 10.1137/120884286. |
[45] |
M. F. Dimentberg and D. V. Iourtchenko, Random vibrations with impacts: A review,, Nonlinear Dyn., 36 (2004), 229.
doi: 10.1023/B:NODY.0000045510.93602.ca. |
[46] |
M. F. Dimentberg and A. I. Menyailov, Response of a single-mass vibroimpact system to white-noise random excitation,, Z. Angew. Math. Mech., 59 (1979), 709.
doi: 10.1002/zamm.19790591205. |
[47] |
N. Sri Namachchivaya and J. H. Park, Stochastic dynamics of impact oscillators,, J. Appl. Mech. Trans. ASME, 72 (2005), 862.
doi: 10.1115/1.2041660. |
[48] |
J. Feng, W. Xu, H. Rong and R. Wang, Stochastic responses of Duffing-Van der Pol vibro-impact system under additive and multiplicative random excitations,, Int. J. Non-Linear Mech., 44 (2009), 51.
doi: 10.1016/j.ijnonlinmec.2008.08.013. |
[49] |
V. F. Zhuravlev, A method for analyzing vibration-impact systems by means of special functions,, Mech. Solids, 11 (1976), 23.
|
[50] |
P. D. Christofides and N. H. El-Farra, Control of Nonlinear and Hybrid Process Systems. Designs for Uncertainty, Constraints and Time-Delays,, Springer, (2005).
|
[51] |
J. Raouf and H. Michalska, Robust stabilization of switched linear systems with Wiener process noise,, in 49th IEEE Conference on Decision and Control, (2010), 6493.
doi: 10.1109/CDC.2010.5717694. |
[52] |
W. Feng and J.-F. Zhang, Stability analysis and stabilization control of multi-variable switched stochastic systems,, Automatica, 42 (2006), 169.
doi: 10.1016/j.automatica.2005.08.016. |
[53] |
D. Chatterjee and D. Liberzon, On stability of stochastic switched systems,, in Proceedings of the 43rd IEEE Conference on Decision and Control., (2004), 4125.
doi: 10.1109/CDC.2004.1429398. |
[54] |
E. Skafidas, R. J. Evans, A. V. Savkin and I. R. Petersen, Stability results for switched controller systems,, Automatica, 35 (1999), 553.
doi: 10.1016/S0005-1098(98)00167-8. |
[55] |
P. Mhaskar, N. H. El-Farra and P. D. Christofides, Robust hybrid predictive control of nonlinear systems,, Automatica, 41 (2005), 209.
doi: 10.1016/j.automatica.2004.08.020. |
[56] |
B. Hu, X. Xu, P.J. Antsaklis and A. N. Michel, Robust stabilizing control laws for a class of second-order switched systems,, Syst. Control Lett., 38 (1999), 197.
doi: 10.1016/S0167-6911(99)00065-1. |
[57] |
Z. Sun, A robust stabilizing law for switched linear systems,, Int. J. Control, 77 (2004), 389.
doi: 10.1080/00207170410001667468. |
[58] |
D. Liberzon, Switching in Systems and Control,, Birkhauser, (2003).
doi: 10.1007/978-1-4612-0017-8. |
[59] |
S.-C. Tan, Y.-M. Lai and C. K. Tse, Sliding Mode Control of Switching Power Converters,, CRC Press, (2012). Google Scholar |
[60] |
J.-Q. Sun, Stochastic Dynamics and Control., volume 4 of Nonlinear Science and Complexity,, Elsevier, (2006).
|
[61] |
Y. Niu, D. W. C. Ho and J. Lam, Robust integral sliding mode control for uncertain stochastic systems with time-varying delay,, Automatica, 41 (2005), 873.
doi: 10.1016/j.automatica.2004.11.035. |
[62] |
L. Wu, D. W. C. Ho and C. W. Li, Stabilisation and performance synthesis for switched stochastic systems,, IET Control Theory Appl., 4 (2010), 1877.
doi: 10.1049/iet-cta.2009.0179. |
[63] |
L. Wu, D. W. C. Ho and C. W. Li, Sliding mode control of switching hybrid systems with stochastic perturbation,, Syst. Contr. Lett., 60 (2011), 531.
doi: 10.1016/j.sysconle.2011.04.007. |
[64] |
Y. Niu, D. W. C. Ho and X. Wang, Robust $H_\infty$ control for nonlinear stochastic systems: A sliding-mode approach,, IEEE Trans. Automat. Contr., 53 (2008), 1695.
doi: 10.1109/TAC.2008.929376. |
[65] |
D. E. Stewart, Rigid-body dynamics with friction and impact,, SIAM Rev., 42 (2000), 3.
doi: 10.1137/S0036144599360110. |
[66] |
M. Abadie, Dynamical simulation of rigid bodies: Modelling of frictional contact,, in Impacts in Mechanical Systems: Analysis and Modelling, (2000).
doi: 10.1007/3-540-45501-9_2. |
[67] |
P. S. Goohpattader, S. Mettu and M. K. Chaudhury, Experimental investigation of the drift and diffusion of small objects on a surface subjected to a bias and an external white noise: Roles of Coulombic friction and hysteresis,, Langmuir, 25 (2009), 9969.
doi: 10.1021/la901111u. |
[68] |
P. S. Goohpattader and M. K. Chaudhury, Diffusive motion with nonlinear friction: Apparently Brownian,, J. Chem. Phys., 133 (2010).
doi: 10.1063/1.3460530. |
[69] |
P.-G. de Gennes, Brownian motion with dry friction,, J. Stat. Phys., 119 (2005), 953.
doi: 10.1007/s10955-005-4650-4. |
[70] |
H. Hayakawa, Langevin equation with Coulomb friction,, Phys. D, 205 (2005), 48.
doi: 10.1016/j.physd.2004.12.011. |
[71] |
H. Touchette, E. Van der Straeten and W. Just, Brownian motion with dry friction: Fokker-Planck approach,, J. Phys. A: Math. Theor., 43 (2010).
doi: 10.1088/1751-8113/43/44/445002. |
[72] |
A. Baule, E. G. D. Cohen and H. Touchette, A path integral approach to random motion with nonlinear friction,, J. Phys. A: Math. Theor., 43 (2010).
doi: 10.1088/1751-8113/43/2/025003. |
[73] |
A. Baule, H. Touchette and E. G. D. Cohen, Stick-slip motion of solids with dry friction subject to random vibrations and an external field,, Nonlinearity, 24 (2011), 351.
doi: 10.1088/0951-7715/24/2/001. |
[74] |
H. Touchette, T. Prellberg and W. Just, Exact power spectra of Brownian motion with solid friction,, J. Phys. A: Math. Theor., 45 (2012).
doi: 10.1088/1751-8113/45/39/395002. |
[75] |
D. J. W. Simpson and R. Kuske, Stochastic perturbations of periodic orbits with sliding, Submitted to: J. Nonlin. Sci., (2014). Google Scholar |
[76] |
A. Colombo, M. di Bernardo, S. J. Hogan and M. R. Jeffrey, Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems,, Phys. D, 241 (2012), 1845.
doi: 10.1016/j.physd.2011.09.017. |
[77] |
M. di Bernardo, P. Kowalczyk and A. Nordmark, Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings,, Phys. D, 170 (2002), 175.
doi: 10.1016/S0167-2789(02)00547-X. |
[78] |
A. Colombo and M. R. Jeffrey, Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows,, SIAM J. Appl. Dyn. Sys., 10 (2011), 423.
doi: 10.1137/100801846. |
[79] |
M. R. Jeffrey and A. Colombo, The two-fold singularity of discontinuous vector fields,, SIAM J. Appl. Dyn. Sys., 8 (2009), 624.
doi: 10.1137/08073113X. |
[80] |
M. A. Teixeira, Stability conditions for discontinuous vector fields,, J. Differential Equations, 88 (1990), 15.
doi: 10.1016/0022-0396(90)90106-Y. |
[81] |
T.-S. Chiang and S.-J. Sheu, Large deviation of small perturbation of some unstable systems,, Stoch. Anal. Appl., 15 (1997), 31.
doi: 10.1080/07362999708809462. |
[82] |
R. Kuske and G. Papanicolaou, The invariant density of a chaotic dynamical system with small noise,, Phys. D, 120 (1998), 255.
doi: 10.1016/S0167-2789(98)00085-2. |
[83] |
P. Hitczenko and G. S. Medvedev, Bursting oscillations induced by small noise,, SIAM J. Appl. Math., 69 (2009), 1359.
doi: 10.1137/070711803. |
[84] |
Ya. Z. Tsypkin, Relay Control Systems,, Cambridge University Press, (1984).
|
[85] |
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems,, Prentice Hall, (2002). Google Scholar |
[86] |
R. C. Dorf and R. H. Bishop, Modern Control Systems,, Prentice Hall, (2001).
doi: 10.1109/TSMC.1981.4308749. |
[87] |
K. J. Åström and R. M. Murray, Feedback Systems. An Introduction for Scientists and Engineers,, Princeton University Press, (2008).
|
[88] |
K. H. Johansson, A. Rantzer and K. J. Åström, Fast switches in relay feedback systems,, Automatica, 35 (1999), 539.
doi: 10.1016/S0005-1098(98)00160-5. |
[89] |
K. H. Johansson, A. E. Barabanov and K. J. Åström, Limit cycles with chattering in relay feedback systems,, IEEE Trans. Automat. Contr., 47 (2002), 1414.
doi: 10.1109/TAC.2002.802770. |
[90] |
Y. Zhao, J. Feng and C. K. Tse, Discrete-time modeling and stability analysis of periodic orbits with sliding for switched linear systems,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 57 (2010), 2948.
doi: 10.1109/TCSI.2010.2050230. |
[91] |
F. Dercole, R. Ferrière, A. Gragnani and S. Rinaldi, Coevolution of slow-fast populations: Evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics,, Proc. R. Soc. B, 273 (2006), 983.
doi: 10.1098/rspb.2005.3398. |
[92] |
F. Dercole, A. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models,, Theor. Popul. Biol., 72 (2007), 197.
doi: 10.1016/j.tpb.2007.06.003. |
[93] |
J. A. Amador, G. Olivar and F. Angulo, Smooth and Filippov models of sustainable development: Bifurcations and numerical computations,, Differ. Equ. Dyn. Syst., 21 (2013), 173.
doi: 10.1007/s12591-012-0138-2. |
[94] |
S. Tang, J. Liang, Y. Xiao and R. A. Cheke, Sliding bifurcations of Filippov two stage pest control models with economic thresholds,, SIAM J. Appl. Math., 72 (2012), 1061.
doi: 10.1137/110847020. |
[95] |
R. Szalai and H. M. Osinga, Invariant polygons in systems with grazing-sliding,, Chaos, 18 (2008).
doi: 10.1063/1.2904774. |
[96] |
M. Tanelli, G. Osorio, M. di Bernardo, S. M. Savaresi and A. Astolfi, Existence, stability and robustness analysis of limit cycles in hybrid anti-lock braking systems,, Int. J. Contr., 82 (2009), 659.
doi: 10.1080/00207170802203598. |
[97] |
M. di Bernardo, K. H. Johansson, U. Jönsson and F. Vasca, On the robustness of periodic solutions in relay feedback systems,, in 15th Triennial World Congress, (2002). Google Scholar |
[98] |
F. Flandoli, Random Perturbations of PDEs and Fluid Dynamic Models., volume 2015 of Lecture Notes in Mathematics,, Springer, (2011).
doi: 10.1007/978-3-642-18231-0. |
[99] |
Yu. V. Prokhorov and A. N. Shiryaev, Probability Theory III: Stochastic Calculus,, Springer, (1998).
doi: 10.1007/978-3-662-03640-2. |
[100] |
E. D. Conway, Stochastic equations with discontinuous drift,, Trans. Am. Math. Soc., 157 (1971), 235.
doi: 10.1090/S0002-9947-1971-0275532-6. |
[101] |
D. Stroock and S. R. S Varadhan, Diffusion processes with continuous coefficients. I,, Comm. Pure Appl. Math., 22 (1969), 345.
doi: 10.1002/cpa.3160220304. |
[102] |
A. Ju. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic integral equations,, Math. USSR Sb., 39 (1981), 387.
|
[103] |
N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift,, Probab. Theory Relat. Fields, 131 (2005), 154.
doi: 10.1007/s00440-004-0361-z. |
[104] |
S. E. A. Mohammed, T. Nilssen and F. Proske, Sobolev differentiable stochastic flows for SDE's with singular coefficients: Applications to the transport equation,, Unpublished, (2012). Google Scholar |
[105] |
H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications,, Springer-Verlag, (1984).
doi: 10.1007/978-3-642-96807-5. |
[106] |
Z. Schuss, Theory and Applications of Stochastic Processes,, Springer, (2010).
doi: 10.1007/978-1-4419-1605-1. |
[107] |
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers,, International Series in Pure and Applied Mathematics. McGraw-Hill, (1978).
|
[108] |
R. Buckdahn, Y. Ouknine and M. Quincampoix, On limiting values of stochastic differential equations with small noise intensity tending to zero,, Bull. Sci. Math., 133 (2009), 229.
doi: 10.1016/j.bulsci.2008.12.005. |
[109] |
O. Menoukeu-Pamen, T. Meyer-Brandis and F. Proske, A Gel'fand triple approach to the small noise problem for discontinuous ODE's,, Unpublished, (2011). Google Scholar |
[110] |
G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogenization,, Springer, (2008).
|
[111] |
I. Karatzas and S. E. Shreve, Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control,, Ann. Prob., 12 (1984), 819.
doi: 10.1214/aop/1176993230. |
[112] |
I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures,, Theory Prob. Appl., 5 (1960), 285.
|
[113] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, (2003).
doi: 10.1007/978-3-642-14394-6. |
[114] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Springer, (1991).
doi: 10.1007/978-1-4612-0949-2. |
[115] |
Z. Qian and W. Zheng, Sharp bounds for transition probability densities of a class of diffusions,, C.R. Acad. Sci. Paris, 335 (2002), 953.
doi: 10.1016/S1631-073X(02)02579-7. |
[116] |
Z. Qian, F. Russo and W. Zheng, Comparison theorem and estimates for transition probability densities of diffusion processes,, Probab. Theory Relat. Fields., 127 (2003), 388.
doi: 10.1007/s00440-003-0291-1. |
[117] |
M. Gradinaru, S. Herrmann and B. Roynette, A singular large deviations phenomenon,, Ann. Inst. Henri Poincaré, 37 (2001), 555.
doi: 10.1016/S0246-0203(01)01075-5. |
[118] |
W. Zhang, Transition density of one-dimensional diffusion with discontinuous drift,, IEEE Trans. Automat. Contr., 35 (1990), 980.
doi: 10.1109/9.58517. |
show all references
References:
[1] |
A. J. Van der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical Systems,, Springer-Verlag, (2000).
|
[2] |
R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-smooth Mechanical Systems, volume 18 of Lecture Notes in Applied and Computational Mathematics,, Springer-Verlag, (2004).
doi: 10.1007/978-3-540-44398-8. |
[3] |
S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics,, IEEE Press, (2001).
doi: 10.1109/9780470545393. |
[4] |
Z. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems,, World Scientific, (2003).
|
[5] |
T. Puu and I. Sushko, editors, Business Cycle Dynamics: Models and Tools,, Springer-Verlag, (2006). Google Scholar |
[6] |
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications,, Springer-Verlag, (2008).
|
[7] |
N. Berglund and B. Gentz, Noise-Induced Phenomena in Slow-Fast Dynamical Systems,, Springer, (2006).
|
[8] |
B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier, Effects of noise in excitable systems,, Phys. Reports, 392 (2004), 321.
doi: 10.1016/j.physrep.2003.10.015. |
[9] |
A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system,, Phys. Rev. Lett., 78 (1997), 775.
doi: 10.1103/PhysRevLett.78.775. |
[10] |
L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic resonance,, Rev. Modern Phys., 70 (1998), 223.
doi: 10.1103/RevModPhys.70.223. |
[11] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Kluwer Academic Publishers., (1988).
doi: 10.1007/978-94-015-7793-9. |
[12] |
M. Wiercigroch and B. De Kraker, Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities,, Singapore, (2000).
doi: 10.1142/9789812796301. |
[13] |
B. Brogliato, Nonsmooth Mechanics: Models, Dynamics and Control,, Springer-Verlag, (1999).
|
[14] |
B. Blazejczyk-Okolewska, K. Czolczynski, T. Kapitaniak and J. Wojewoda, Chaotic Mechanics in Systems with Impacts and Friction,, World Scientific, (1999).
doi: 10.1142/9789812798565. |
[15] |
J. Awrejcewicz and C. Lamarque, Bifurcation and Chaos in Nonsmooth Mechanical Systems,, World Scientific, (2003).
doi: 10.1142/9789812564801. |
[16] |
R. A. Ibrahim, Vibro-Impact Dynamics., volume 43 of Lecture Notes in Applied and Computational Mechanics,, Springer, (2009).
doi: 10.1007/978-3-642-00275-5. |
[17] |
C. K. Tse, Complex Behavior of Switching Power Converters,, CRC Press, (2003).
doi: 10.1109/JPROC.2002.1015006. |
[18] |
A. F. Filippov, Differential equations with discontinuous right-hand side., Mat. Sb., 51 (1960), 99.
|
[19] |
P. Casini, O. Giannini and F. Vestroni, Experimental evidence of non-standard bifurcations in non-smooth oscillator dynamics,, Nonlinear Dyn., 46 (2006), 259.
doi: 10.1007/s11071-006-9041-0. |
[20] |
A. C. J. Luo and B. C. Gegg, Stick and non-stick periodic motions in periodically forced oscillators with dry friction,, J. Sound Vib., 291 (2006), 132.
doi: 10.1016/j.jsv.2005.06.003. |
[21] |
M. Johansson, Piecewise Linear Control Systems., volume 284 of Lecture Notes in Control and Information Sciencesm, Springer-Verlag, (2003).
doi: 10.1007/3-540-36801-9. |
[22] |
M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations,, Int J. Bifurcation Chaos, 11 (2001), 1121.
doi: 10.1142/S0218127401002584. |
[23] |
Z. Schuss, Theory and Applications of Stochastic Differential Equations,, Wiley, (1980).
|
[24] |
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences,, Springer-Verlag, (1985).
|
[25] |
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems,, Springer, (2012).
doi: 10.1007/978-3-642-25847-3. |
[26] |
J. Grasman and O. A. van Herwaarden, Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications,, Springer, (1999).
doi: 10.1007/978-3-662-03857-4. |
[27] |
, Special Issue on Nonsmooth Systems,, Phys. D, 241 (2012). Google Scholar |
[28] |
M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke and G. Yuan, Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems,, Phys. Rev. Lett., 83 (1999), 4281.
doi: 10.1103/PhysRevLett.83.4281. |
[29] |
T. C. L. Griffin, Dynamics of Stochastic Nonsmooth Systems,, PhD thesis, (2005). Google Scholar |
[30] |
T. Griffin and S. Hogan, Dynamics of discontinuous systems with imperfections and noise,, in IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, (2005), 275.
doi: 10.1007/1-4020-3268-4_26. |
[31] |
P. Glendinning, The border collision normal form with stochastic switching surface,, SIAM J. Appl. Dyn. Sys., 13 (2014), 181.
doi: 10.1137/130931643. |
[32] |
M. A. Hassouneh, E. H. Abed and H. E. Nusse, Robust dangerous border-collision bifurcations in piecewise smooth systems,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.070201. |
[33] |
A. Ganguli and S. Banerjee, Dangerous bifurcation at border collision: When does it occur?,, Phys. Rev. E., 71 (2005).
doi: 10.1103/PhysRevE.71.057202. |
[34] |
Y. Do, A mechanism for dangerous border collision bifurcations,, Chaos Solitons Fractals, 32 (2007), 352.
doi: 10.1016/j.chaos.2006.07.018. |
[35] |
Y. Do and H. K. Baek, Dangerous border-collision bifurcations of a piecewise-smooth map,, Comm. Pure Appl. Anal., 5 (2006), 493.
doi: 10.3934/cpaa.2006.5.493. |
[36] |
R. Wackerbauer, Noise-induced stabilization of one-dimensional discontinuous maps,, Phys. Rev. E, 58 (1998), 3036. Google Scholar |
[37] |
L. Zhang, P. Shi, C. Wang and H. Gao, Robust $H_\infty$ filtering for switched linear discrete-time systems with polytopic uncertainties,, Int. J. Adapt. Control Signal Process, 20 (2006), 291.
doi: 10.1002/acs.901. |
[38] |
W. Zhang, J. Hu and J. Lian, Quadratic optimal control of switched linear stochastic systems,, Syst. Contr. Lett., 59 (2010), 736.
doi: 10.1016/j.sysconle.2010.08.010. |
[39] |
P. H. E. Tiesinga, Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons,, Phys. Rev. E, 65 (2002).
doi: 10.1103/PhysRevE.65.041913. |
[40] |
A. B. Nordmark, Non-periodic motion caused by grazing incidence in impact oscillators,, J. Sound Vib., 2 (1991), 279.
doi: 10.1016/0022-460X(91)90592-8. |
[41] |
H. Dankowicz and A. B. Nordmark, On the origin and bifurcations of stick-slip oscillations,, Phys. D, 136 (2000), 280.
doi: 10.1016/S0167-2789(99)00161-X. |
[42] |
M. H. Fredriksson and A. B. Nordmark, On normal form calculation in impact oscillators,, Proc. R. Soc. A, 456 (2000), 315.
doi: 10.1098/rspa.2000.0519. |
[43] |
M. di Bernardo, C. J. Budd and A. R. Champneys, Normal form maps for grazing bifurcations in $n$-dimensional piecewise-smooth dynamical systems,, Phys. D, 160 (2001), 222.
doi: 10.1016/S0167-2789(01)00349-9. |
[44] |
D. J. W. Simpson, J. Hogan and R. Kuske, Stochastic regular grazing bifurcations,, SIAM J. Appl. Dyn. Sys., 12 (2013), 533.
doi: 10.1137/120884286. |
[45] |
M. F. Dimentberg and D. V. Iourtchenko, Random vibrations with impacts: A review,, Nonlinear Dyn., 36 (2004), 229.
doi: 10.1023/B:NODY.0000045510.93602.ca. |
[46] |
M. F. Dimentberg and A. I. Menyailov, Response of a single-mass vibroimpact system to white-noise random excitation,, Z. Angew. Math. Mech., 59 (1979), 709.
doi: 10.1002/zamm.19790591205. |
[47] |
N. Sri Namachchivaya and J. H. Park, Stochastic dynamics of impact oscillators,, J. Appl. Mech. Trans. ASME, 72 (2005), 862.
doi: 10.1115/1.2041660. |
[48] |
J. Feng, W. Xu, H. Rong and R. Wang, Stochastic responses of Duffing-Van der Pol vibro-impact system under additive and multiplicative random excitations,, Int. J. Non-Linear Mech., 44 (2009), 51.
doi: 10.1016/j.ijnonlinmec.2008.08.013. |
[49] |
V. F. Zhuravlev, A method for analyzing vibration-impact systems by means of special functions,, Mech. Solids, 11 (1976), 23.
|
[50] |
P. D. Christofides and N. H. El-Farra, Control of Nonlinear and Hybrid Process Systems. Designs for Uncertainty, Constraints and Time-Delays,, Springer, (2005).
|
[51] |
J. Raouf and H. Michalska, Robust stabilization of switched linear systems with Wiener process noise,, in 49th IEEE Conference on Decision and Control, (2010), 6493.
doi: 10.1109/CDC.2010.5717694. |
[52] |
W. Feng and J.-F. Zhang, Stability analysis and stabilization control of multi-variable switched stochastic systems,, Automatica, 42 (2006), 169.
doi: 10.1016/j.automatica.2005.08.016. |
[53] |
D. Chatterjee and D. Liberzon, On stability of stochastic switched systems,, in Proceedings of the 43rd IEEE Conference on Decision and Control., (2004), 4125.
doi: 10.1109/CDC.2004.1429398. |
[54] |
E. Skafidas, R. J. Evans, A. V. Savkin and I. R. Petersen, Stability results for switched controller systems,, Automatica, 35 (1999), 553.
doi: 10.1016/S0005-1098(98)00167-8. |
[55] |
P. Mhaskar, N. H. El-Farra and P. D. Christofides, Robust hybrid predictive control of nonlinear systems,, Automatica, 41 (2005), 209.
doi: 10.1016/j.automatica.2004.08.020. |
[56] |
B. Hu, X. Xu, P.J. Antsaklis and A. N. Michel, Robust stabilizing control laws for a class of second-order switched systems,, Syst. Control Lett., 38 (1999), 197.
doi: 10.1016/S0167-6911(99)00065-1. |
[57] |
Z. Sun, A robust stabilizing law for switched linear systems,, Int. J. Control, 77 (2004), 389.
doi: 10.1080/00207170410001667468. |
[58] |
D. Liberzon, Switching in Systems and Control,, Birkhauser, (2003).
doi: 10.1007/978-1-4612-0017-8. |
[59] |
S.-C. Tan, Y.-M. Lai and C. K. Tse, Sliding Mode Control of Switching Power Converters,, CRC Press, (2012). Google Scholar |
[60] |
J.-Q. Sun, Stochastic Dynamics and Control., volume 4 of Nonlinear Science and Complexity,, Elsevier, (2006).
|
[61] |
Y. Niu, D. W. C. Ho and J. Lam, Robust integral sliding mode control for uncertain stochastic systems with time-varying delay,, Automatica, 41 (2005), 873.
doi: 10.1016/j.automatica.2004.11.035. |
[62] |
L. Wu, D. W. C. Ho and C. W. Li, Stabilisation and performance synthesis for switched stochastic systems,, IET Control Theory Appl., 4 (2010), 1877.
doi: 10.1049/iet-cta.2009.0179. |
[63] |
L. Wu, D. W. C. Ho and C. W. Li, Sliding mode control of switching hybrid systems with stochastic perturbation,, Syst. Contr. Lett., 60 (2011), 531.
doi: 10.1016/j.sysconle.2011.04.007. |
[64] |
Y. Niu, D. W. C. Ho and X. Wang, Robust $H_\infty$ control for nonlinear stochastic systems: A sliding-mode approach,, IEEE Trans. Automat. Contr., 53 (2008), 1695.
doi: 10.1109/TAC.2008.929376. |
[65] |
D. E. Stewart, Rigid-body dynamics with friction and impact,, SIAM Rev., 42 (2000), 3.
doi: 10.1137/S0036144599360110. |
[66] |
M. Abadie, Dynamical simulation of rigid bodies: Modelling of frictional contact,, in Impacts in Mechanical Systems: Analysis and Modelling, (2000).
doi: 10.1007/3-540-45501-9_2. |
[67] |
P. S. Goohpattader, S. Mettu and M. K. Chaudhury, Experimental investigation of the drift and diffusion of small objects on a surface subjected to a bias and an external white noise: Roles of Coulombic friction and hysteresis,, Langmuir, 25 (2009), 9969.
doi: 10.1021/la901111u. |
[68] |
P. S. Goohpattader and M. K. Chaudhury, Diffusive motion with nonlinear friction: Apparently Brownian,, J. Chem. Phys., 133 (2010).
doi: 10.1063/1.3460530. |
[69] |
P.-G. de Gennes, Brownian motion with dry friction,, J. Stat. Phys., 119 (2005), 953.
doi: 10.1007/s10955-005-4650-4. |
[70] |
H. Hayakawa, Langevin equation with Coulomb friction,, Phys. D, 205 (2005), 48.
doi: 10.1016/j.physd.2004.12.011. |
[71] |
H. Touchette, E. Van der Straeten and W. Just, Brownian motion with dry friction: Fokker-Planck approach,, J. Phys. A: Math. Theor., 43 (2010).
doi: 10.1088/1751-8113/43/44/445002. |
[72] |
A. Baule, E. G. D. Cohen and H. Touchette, A path integral approach to random motion with nonlinear friction,, J. Phys. A: Math. Theor., 43 (2010).
doi: 10.1088/1751-8113/43/2/025003. |
[73] |
A. Baule, H. Touchette and E. G. D. Cohen, Stick-slip motion of solids with dry friction subject to random vibrations and an external field,, Nonlinearity, 24 (2011), 351.
doi: 10.1088/0951-7715/24/2/001. |
[74] |
H. Touchette, T. Prellberg and W. Just, Exact power spectra of Brownian motion with solid friction,, J. Phys. A: Math. Theor., 45 (2012).
doi: 10.1088/1751-8113/45/39/395002. |
[75] |
D. J. W. Simpson and R. Kuske, Stochastic perturbations of periodic orbits with sliding, Submitted to: J. Nonlin. Sci., (2014). Google Scholar |
[76] |
A. Colombo, M. di Bernardo, S. J. Hogan and M. R. Jeffrey, Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems,, Phys. D, 241 (2012), 1845.
doi: 10.1016/j.physd.2011.09.017. |
[77] |
M. di Bernardo, P. Kowalczyk and A. Nordmark, Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings,, Phys. D, 170 (2002), 175.
doi: 10.1016/S0167-2789(02)00547-X. |
[78] |
A. Colombo and M. R. Jeffrey, Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows,, SIAM J. Appl. Dyn. Sys., 10 (2011), 423.
doi: 10.1137/100801846. |
[79] |
M. R. Jeffrey and A. Colombo, The two-fold singularity of discontinuous vector fields,, SIAM J. Appl. Dyn. Sys., 8 (2009), 624.
doi: 10.1137/08073113X. |
[80] |
M. A. Teixeira, Stability conditions for discontinuous vector fields,, J. Differential Equations, 88 (1990), 15.
doi: 10.1016/0022-0396(90)90106-Y. |
[81] |
T.-S. Chiang and S.-J. Sheu, Large deviation of small perturbation of some unstable systems,, Stoch. Anal. Appl., 15 (1997), 31.
doi: 10.1080/07362999708809462. |
[82] |
R. Kuske and G. Papanicolaou, The invariant density of a chaotic dynamical system with small noise,, Phys. D, 120 (1998), 255.
doi: 10.1016/S0167-2789(98)00085-2. |
[83] |
P. Hitczenko and G. S. Medvedev, Bursting oscillations induced by small noise,, SIAM J. Appl. Math., 69 (2009), 1359.
doi: 10.1137/070711803. |
[84] |
Ya. Z. Tsypkin, Relay Control Systems,, Cambridge University Press, (1984).
|
[85] |
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems,, Prentice Hall, (2002). Google Scholar |
[86] |
R. C. Dorf and R. H. Bishop, Modern Control Systems,, Prentice Hall, (2001).
doi: 10.1109/TSMC.1981.4308749. |
[87] |
K. J. Åström and R. M. Murray, Feedback Systems. An Introduction for Scientists and Engineers,, Princeton University Press, (2008).
|
[88] |
K. H. Johansson, A. Rantzer and K. J. Åström, Fast switches in relay feedback systems,, Automatica, 35 (1999), 539.
doi: 10.1016/S0005-1098(98)00160-5. |
[89] |
K. H. Johansson, A. E. Barabanov and K. J. Åström, Limit cycles with chattering in relay feedback systems,, IEEE Trans. Automat. Contr., 47 (2002), 1414.
doi: 10.1109/TAC.2002.802770. |
[90] |
Y. Zhao, J. Feng and C. K. Tse, Discrete-time modeling and stability analysis of periodic orbits with sliding for switched linear systems,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 57 (2010), 2948.
doi: 10.1109/TCSI.2010.2050230. |
[91] |
F. Dercole, R. Ferrière, A. Gragnani and S. Rinaldi, Coevolution of slow-fast populations: Evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics,, Proc. R. Soc. B, 273 (2006), 983.
doi: 10.1098/rspb.2005.3398. |
[92] |
F. Dercole, A. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models,, Theor. Popul. Biol., 72 (2007), 197.
doi: 10.1016/j.tpb.2007.06.003. |
[93] |
J. A. Amador, G. Olivar and F. Angulo, Smooth and Filippov models of sustainable development: Bifurcations and numerical computations,, Differ. Equ. Dyn. Syst., 21 (2013), 173.
doi: 10.1007/s12591-012-0138-2. |
[94] |
S. Tang, J. Liang, Y. Xiao and R. A. Cheke, Sliding bifurcations of Filippov two stage pest control models with economic thresholds,, SIAM J. Appl. Math., 72 (2012), 1061.
doi: 10.1137/110847020. |
[95] |
R. Szalai and H. M. Osinga, Invariant polygons in systems with grazing-sliding,, Chaos, 18 (2008).
doi: 10.1063/1.2904774. |
[96] |
M. Tanelli, G. Osorio, M. di Bernardo, S. M. Savaresi and A. Astolfi, Existence, stability and robustness analysis of limit cycles in hybrid anti-lock braking systems,, Int. J. Contr., 82 (2009), 659.
doi: 10.1080/00207170802203598. |
[97] |
M. di Bernardo, K. H. Johansson, U. Jönsson and F. Vasca, On the robustness of periodic solutions in relay feedback systems,, in 15th Triennial World Congress, (2002). Google Scholar |
[98] |
F. Flandoli, Random Perturbations of PDEs and Fluid Dynamic Models., volume 2015 of Lecture Notes in Mathematics,, Springer, (2011).
doi: 10.1007/978-3-642-18231-0. |
[99] |
Yu. V. Prokhorov and A. N. Shiryaev, Probability Theory III: Stochastic Calculus,, Springer, (1998).
doi: 10.1007/978-3-662-03640-2. |
[100] |
E. D. Conway, Stochastic equations with discontinuous drift,, Trans. Am. Math. Soc., 157 (1971), 235.
doi: 10.1090/S0002-9947-1971-0275532-6. |
[101] |
D. Stroock and S. R. S Varadhan, Diffusion processes with continuous coefficients. I,, Comm. Pure Appl. Math., 22 (1969), 345.
doi: 10.1002/cpa.3160220304. |
[102] |
A. Ju. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic integral equations,, Math. USSR Sb., 39 (1981), 387.
|
[103] |
N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift,, Probab. Theory Relat. Fields, 131 (2005), 154.
doi: 10.1007/s00440-004-0361-z. |
[104] |
S. E. A. Mohammed, T. Nilssen and F. Proske, Sobolev differentiable stochastic flows for SDE's with singular coefficients: Applications to the transport equation,, Unpublished, (2012). Google Scholar |
[105] |
H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications,, Springer-Verlag, (1984).
doi: 10.1007/978-3-642-96807-5. |
[106] |
Z. Schuss, Theory and Applications of Stochastic Processes,, Springer, (2010).
doi: 10.1007/978-1-4419-1605-1. |
[107] |
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers,, International Series in Pure and Applied Mathematics. McGraw-Hill, (1978).
|
[108] |
R. Buckdahn, Y. Ouknine and M. Quincampoix, On limiting values of stochastic differential equations with small noise intensity tending to zero,, Bull. Sci. Math., 133 (2009), 229.
doi: 10.1016/j.bulsci.2008.12.005. |
[109] |
O. Menoukeu-Pamen, T. Meyer-Brandis and F. Proske, A Gel'fand triple approach to the small noise problem for discontinuous ODE's,, Unpublished, (2011). Google Scholar |
[110] |
G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogenization,, Springer, (2008).
|
[111] |
I. Karatzas and S. E. Shreve, Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control,, Ann. Prob., 12 (1984), 819.
doi: 10.1214/aop/1176993230. |
[112] |
I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures,, Theory Prob. Appl., 5 (1960), 285.
|
[113] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, (2003).
doi: 10.1007/978-3-642-14394-6. |
[114] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Springer, (1991).
doi: 10.1007/978-1-4612-0949-2. |
[115] |
Z. Qian and W. Zheng, Sharp bounds for transition probability densities of a class of diffusions,, C.R. Acad. Sci. Paris, 335 (2002), 953.
doi: 10.1016/S1631-073X(02)02579-7. |
[116] |
Z. Qian, F. Russo and W. Zheng, Comparison theorem and estimates for transition probability densities of diffusion processes,, Probab. Theory Relat. Fields., 127 (2003), 388.
doi: 10.1007/s00440-003-0291-1. |
[117] |
M. Gradinaru, S. Herrmann and B. Roynette, A singular large deviations phenomenon,, Ann. Inst. Henri Poincaré, 37 (2001), 555.
doi: 10.1016/S0246-0203(01)01075-5. |
[118] |
W. Zhang, Transition density of one-dimensional diffusion with discontinuous drift,, IEEE Trans. Automat. Contr., 35 (1990), 980.
doi: 10.1109/9.58517. |
[1] |
Soliman A. A. Hamdallah, Sanyi Tang. Stability and bifurcation analysis of Filippov food chain system with food chain control strategy. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019244 |
[2] |
Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019235 |
[3] |
Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 |
[4] |
Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure & Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038 |
[5] |
Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 |
[6] |
Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783 |
[7] |
Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447 |
[8] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[9] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[10] |
Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879 |
[11] |
Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050 |
[12] |
Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265 |
[13] |
Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221 |
[14] |
David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135 |
[15] |
Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103 |
[16] |
Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471 |
[17] |
Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063 |
[18] |
Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151 |
[19] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[20] |
Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]