November  2014, 19(9): 2915-2940. doi: 10.3934/dcdsb.2014.19.2915

Global dynamics of a piece-wise epidemic model with switching vaccination strategy

1. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China

2. 

Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham, Kent ME44TB, United Kingdom

Received  December 2013 Revised  May 2014 Published  September 2014

A piece-wise epidemic model of a switching vaccination program, implemented once the number of people exposed to a disease-causing virus reaches a critical level, is proposed. In addition, variation or uncertainties in interventions are examined with a perturbed system version of the model. We also analyzed the global dynamic behaviors of both the original piece-wise system and the perturbed version theoretically, using generalized Jacobian theory, Lyapunov constants for a non-smooth vector field and a generalization of Dulac's criterion. The main results show that, as the critical value varies, there are three possibilities for stabilization of the piece-wise system: (i) at the disease-free equilibrium; (ii) at the endemic states for the two subsystems or (iii) at a generalized equilibrium which is a novel global attractor for non-smooth systems. The perturbed system exhibits new global attractors including a pseudo-focus of parabolic-parabolic (PP) type, a pseudo-equilibrium and a crossing cycle surrounding a sliding mode region. Our findings demonstrate that an infectious disease can be eradicated either by increasing the vaccination rate or by stabilizing the number of infected individuals at a previously given level, conditional upon a suitable critical level and the parameter values.
Citation: Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2915-2940. doi: 10.3934/dcdsb.2014.19.2915
References:
[1]

J. Arino, C. C. Mccluskey and P. V. D. Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[2]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems,, Springer, (2008).   Google Scholar

[3]

, China Ministry of Health and joint UN programme on HIV/AIDS WHO, Estimates for the HIV/AIDS Epidemic in China,, 2009., ().   Google Scholar

[4]

F. Clarke, Y. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).   Google Scholar

[5]

A. B. Claudio, P. D. S. Paulo and A. T. Marco, A singular approach to discontinuous vector fields on the plane,, J. Diff. Equa., 231 (2006), 633.  doi: 10.1016/j.jde.2006.08.017.  Google Scholar

[6]

B. Coll, A. Gasull and R. Prohens, Degenerate hopf bifurcations in discontinuous planar system,, J. Math. Anal. Appl., 253 (2001), 671.  doi: 10.1006/jmaa.2000.7188.  Google Scholar

[7]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Kluwer Academic, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[8]

D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity,, Nonl. Anal. TMA., 63 (2005).  doi: 10.1016/j.na.2004.12.018.  Google Scholar

[9]

M. A. Han and W. N. Zhang, On hopf bifurcation in non-smooth planar systems,, J. Diff. Equa., 248 (2010), 2399.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[10]

, A/H1N1 vaccination program extends to all Beijingers,, November 7, (2009), 2009.   Google Scholar

[11]

, Guangdong starts A/H1N1 vaccination for migrant workers,, January 6, (2010), 2010.   Google Scholar

[12]

J. Hui and L. S. Chen, Impulsive vaccination of SIR epidemic models with nonlinear incidence rates,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 595.  doi: 10.3934/dcdsb.2004.4.595.  Google Scholar

[13]

G. R. Jiang and Q. G. Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination,, Appl. Math. Comput., 215 (2009), 1035.  doi: 10.1016/j.amc.2009.06.032.  Google Scholar

[14]

R. I. Leine, Bifurcations of equilibria in non-smooth continuous systems,, Phys. D, 223 (2006), 121.  doi: 10.1016/j.physd.2006.08.021.  Google Scholar

[15]

R. I. Leine and D. H. van Campen, Bifurcation phenomena in non-smooth dynamical systems,, Eur. J. Mech. A Solids, 25 (2006), 595.  doi: 10.1016/j.euromechsol.2006.04.004.  Google Scholar

[16]

D. Liberzon, Switching in Systems and Control,, Springer-Verlag, (1973).  doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[17]

J. Melin, Does distribution theory contain means for extending Poincare-Bendixson theory,, J. Math. Anal. Appl., 303 (2005), 81.  doi: 10.1016/j.jmaa.2004.06.069.  Google Scholar

[18]

M. E. M. Meza, A. Bhaya, E. K. Kaszkurewicz, D. A. Silveira and M. I. Costa, Threshold policies control for predator-prey systems using a control Liapunov function approach,, Theor. Popul. Biol., 67 (2005), 273.  doi: 10.1016/j.tpb.2005.01.005.  Google Scholar

[19]

M. E. M. Meza, M. I. S. Costa, A. Bhaya and E. Kaszkurewicz, Threshold policies in the control of predator-prey models,, Preprints of the 15th Triennial World Congress (IFAC), (2002), 1.   Google Scholar

[20]

L. F. Nie, Z. D. Teng and A. Torres, Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination,, Nonl. Anal. RWA., 13 (2012), 1621.  doi: 10.1016/j.nonrwa.2011.11.019.  Google Scholar

[21]

A. d'. Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model,, Math. Bios., 179 (2002), 57.  doi: 10.1016/S0025-5564(02)00095-0.  Google Scholar

[22]

L. Sanchez, Convergence to equilibria in the Lorenz system via monotone methods,, J. Diff. Equa., 217 (2005), 341.  doi: 10.1016/j.jde.2004.08.005.  Google Scholar

[23]

S. Y. Tang and J. H. Liang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge,, Nonl. Anal. TMA., 76 (2013), 165.  doi: 10.1016/j.na.2012.08.013.  Google Scholar

[24]

S. Y. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke, Sliding bifurcation of Filippov two stage pest control models with economic thresholds,, SIAM J. Appl. Math., 72 (2012), 1061.  doi: 10.1137/110847020.  Google Scholar

[25]

S. Y. Tang, Y. N. Xiao and et.al., Community-based measures for mitigating the 2009 H1N1 pandemic in China,, PLoS ONE, 5 (2010), 1.  doi: 10.1371/journal.pone.0010911.  Google Scholar

[26]

V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems,, Mir, (1978).   Google Scholar

[27]

V. I. Utkin, Sliding Modes in Control and Optimization,, Springer, (1992).  doi: 10.1007/978-3-642-84379-2.  Google Scholar

[28]

A. L. Wang and Y. N. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination,, Internat. J. Bifur. Chaos, 23 (2013).  doi: 10.1142/S0218127413501447.  Google Scholar

[29]

W. D. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[30]

Y. N. Xiao and S. Y. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154.  doi: 10.1016/j.nonrwa.2010.05.002.  Google Scholar

[31]

Y. N. Xiao, X. X. Xu and S. Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403.  doi: 10.1007/s11538-012-9758-5.  Google Scholar

[32]

Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence,, Math. Biosci. Eng., 10 (2013), 445.  doi: 10.3934/mbe.2013.10.445.  Google Scholar

[33]

T. R. Zhang and W. D. Wang, Hopf bifurcation and bistability of a nutrient-phytoplankton-zooplankton model,, Appl. Math. Model., 36 (2012), 6225.  doi: 10.1016/j.apm.2012.02.012.  Google Scholar

show all references

References:
[1]

J. Arino, C. C. Mccluskey and P. V. D. Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[2]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems,, Springer, (2008).   Google Scholar

[3]

, China Ministry of Health and joint UN programme on HIV/AIDS WHO, Estimates for the HIV/AIDS Epidemic in China,, 2009., ().   Google Scholar

[4]

F. Clarke, Y. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).   Google Scholar

[5]

A. B. Claudio, P. D. S. Paulo and A. T. Marco, A singular approach to discontinuous vector fields on the plane,, J. Diff. Equa., 231 (2006), 633.  doi: 10.1016/j.jde.2006.08.017.  Google Scholar

[6]

B. Coll, A. Gasull and R. Prohens, Degenerate hopf bifurcations in discontinuous planar system,, J. Math. Anal. Appl., 253 (2001), 671.  doi: 10.1006/jmaa.2000.7188.  Google Scholar

[7]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Kluwer Academic, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[8]

D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity,, Nonl. Anal. TMA., 63 (2005).  doi: 10.1016/j.na.2004.12.018.  Google Scholar

[9]

M. A. Han and W. N. Zhang, On hopf bifurcation in non-smooth planar systems,, J. Diff. Equa., 248 (2010), 2399.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[10]

, A/H1N1 vaccination program extends to all Beijingers,, November 7, (2009), 2009.   Google Scholar

[11]

, Guangdong starts A/H1N1 vaccination for migrant workers,, January 6, (2010), 2010.   Google Scholar

[12]

J. Hui and L. S. Chen, Impulsive vaccination of SIR epidemic models with nonlinear incidence rates,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 595.  doi: 10.3934/dcdsb.2004.4.595.  Google Scholar

[13]

G. R. Jiang and Q. G. Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination,, Appl. Math. Comput., 215 (2009), 1035.  doi: 10.1016/j.amc.2009.06.032.  Google Scholar

[14]

R. I. Leine, Bifurcations of equilibria in non-smooth continuous systems,, Phys. D, 223 (2006), 121.  doi: 10.1016/j.physd.2006.08.021.  Google Scholar

[15]

R. I. Leine and D. H. van Campen, Bifurcation phenomena in non-smooth dynamical systems,, Eur. J. Mech. A Solids, 25 (2006), 595.  doi: 10.1016/j.euromechsol.2006.04.004.  Google Scholar

[16]

D. Liberzon, Switching in Systems and Control,, Springer-Verlag, (1973).  doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[17]

J. Melin, Does distribution theory contain means for extending Poincare-Bendixson theory,, J. Math. Anal. Appl., 303 (2005), 81.  doi: 10.1016/j.jmaa.2004.06.069.  Google Scholar

[18]

M. E. M. Meza, A. Bhaya, E. K. Kaszkurewicz, D. A. Silveira and M. I. Costa, Threshold policies control for predator-prey systems using a control Liapunov function approach,, Theor. Popul. Biol., 67 (2005), 273.  doi: 10.1016/j.tpb.2005.01.005.  Google Scholar

[19]

M. E. M. Meza, M. I. S. Costa, A. Bhaya and E. Kaszkurewicz, Threshold policies in the control of predator-prey models,, Preprints of the 15th Triennial World Congress (IFAC), (2002), 1.   Google Scholar

[20]

L. F. Nie, Z. D. Teng and A. Torres, Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination,, Nonl. Anal. RWA., 13 (2012), 1621.  doi: 10.1016/j.nonrwa.2011.11.019.  Google Scholar

[21]

A. d'. Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model,, Math. Bios., 179 (2002), 57.  doi: 10.1016/S0025-5564(02)00095-0.  Google Scholar

[22]

L. Sanchez, Convergence to equilibria in the Lorenz system via monotone methods,, J. Diff. Equa., 217 (2005), 341.  doi: 10.1016/j.jde.2004.08.005.  Google Scholar

[23]

S. Y. Tang and J. H. Liang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge,, Nonl. Anal. TMA., 76 (2013), 165.  doi: 10.1016/j.na.2012.08.013.  Google Scholar

[24]

S. Y. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke, Sliding bifurcation of Filippov two stage pest control models with economic thresholds,, SIAM J. Appl. Math., 72 (2012), 1061.  doi: 10.1137/110847020.  Google Scholar

[25]

S. Y. Tang, Y. N. Xiao and et.al., Community-based measures for mitigating the 2009 H1N1 pandemic in China,, PLoS ONE, 5 (2010), 1.  doi: 10.1371/journal.pone.0010911.  Google Scholar

[26]

V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems,, Mir, (1978).   Google Scholar

[27]

V. I. Utkin, Sliding Modes in Control and Optimization,, Springer, (1992).  doi: 10.1007/978-3-642-84379-2.  Google Scholar

[28]

A. L. Wang and Y. N. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination,, Internat. J. Bifur. Chaos, 23 (2013).  doi: 10.1142/S0218127413501447.  Google Scholar

[29]

W. D. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[30]

Y. N. Xiao and S. Y. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154.  doi: 10.1016/j.nonrwa.2010.05.002.  Google Scholar

[31]

Y. N. Xiao, X. X. Xu and S. Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403.  doi: 10.1007/s11538-012-9758-5.  Google Scholar

[32]

Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence,, Math. Biosci. Eng., 10 (2013), 445.  doi: 10.3934/mbe.2013.10.445.  Google Scholar

[33]

T. R. Zhang and W. D. Wang, Hopf bifurcation and bistability of a nutrient-phytoplankton-zooplankton model,, Appl. Math. Model., 36 (2012), 6225.  doi: 10.1016/j.apm.2012.02.012.  Google Scholar

[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[11]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[12]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[13]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[18]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[19]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[20]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]