January  2014, 19(1): 299-322. doi: 10.3934/dcdsb.2014.19.299

Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations

1. 

Department of Mathematics, Shanghai Normal University, Division of Computational Science of E-institute of Shanghai Universities, Shanghai, 200234, China, China

Received  August 2012 Revised  September 2013 Published  December 2013

We propose an efficient Legendre-Gauss collocation algorithm for second-order nonlinear ordinary differential equations (ODEs). We also design a Legendre-Gauss-type collocation algorithm for time-dependent second-order nonlinear partial differential equations (PDEs), which can be implemented in a synchronous parallel fashion. Numerical results indicate the high accuracy and effectiveness of the suggested algorithms.
Citation: Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299
References:
[1]

I. Babuška and T. Janik, The $h$-$p$ version of the finite element method for parabolic equations: I. The $p$-version in time,, Numer. Methods Partial Differential Equations, 5 (1989), 363.  doi: 10.1002/num.1690050407.  Google Scholar

[2]

I. Babuška and T. Janik, The $h$-$p$ version of the finite element method for parabolic equations: II. The $h$-$p$ version in time,, Numer. Methods Partial Differential Equations, 6 (1990), 343.  doi: 10.1002/num.1690060406.  Google Scholar

[3]

P. Bar-Yoseph, E. Moses, U. Zrahia and A. L. Yarin, Space-time spectral element methods for one-dimensional nonlinear advection-diffusion problems,, J. Comput. Phys., 119 (1995), 62.  doi: 10.1006/jcph.1995.1116.  Google Scholar

[4]

C. Bernardi and Y. Maday, Spectral Methods, in Handbook of Numerical Analysis,, (eds. P. G. Ciarlet and J. L. Lions), (1997).  doi: 10.1016/S1570-8659(97)80003-8.  Google Scholar

[5]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, 2nd edition, (2001).   Google Scholar

[6]

J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods,, John Wiley & Sons, (1987).   Google Scholar

[7]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains,, Springer-Verlag, (2006).   Google Scholar

[8]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics,, Springer-Verlag, (2007).   Google Scholar

[9]

J. M. Franco, Runge-Kutta-Nyström method adapted to the numerical integration of perturbed oscillators,, Comput. Phys. Comm., 147 (2002), 770.  doi: 10.1016/S0010-4655(02)00460-5.  Google Scholar

[10]

J. M. Franco, I. Gómez and L. Rández, Four-stage symplectic and P-stable SDIRKN methods with dispersion of high order,, Numer. Algor., 26 (2001), 347.  doi: 10.1023/A:1016629706668.  Google Scholar

[11]

D. Funaro, Polynomial Approximations of Differential Equations,, Springer-Verlag, (1992).   Google Scholar

[12]

I. Glenn, S. Brian and W. Rodney, Spectral methods in time for a class of parabolic partial differential equations,, J. Comput. Phys., 102 (1992), 88.  doi: 10.1016/S0021-9991(05)80008-7.  Google Scholar

[13]

D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications,, Philadelphia, (1977).   Google Scholar

[14]

B. Y. Guo, Spectral Methods and Their Applications,, World Scientific, (1998).  doi: 10.1142/3662.  Google Scholar

[15]

B. Y. Guo and Z. Q. Wang, Legendre-Gauss collocation methods for ordinary differential equations,, Adv. Comput. Math., 30 (2009), 249.  doi: 10.1007/s10444-008-9067-6.  Google Scholar

[16]

B. Y. Guo and Z. Q. Wang, A spectral collocation method for solving initial value problems of first order ordinary differential equations,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1029.   Google Scholar

[17]

B. Y. Guo and J. P. Yan, Legendre-Gauss collocation methods for initial value problems of second ordinary differential equations,, Appl. Numer. Math., 59 (2009), 1386.  doi: 10.1016/j.apnum.2008.08.007.  Google Scholar

[18]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equation I: Nonstiff Problems,, Springer-Verlag, (1987).   Google Scholar

[19]

E. Hairer and G. Wanner, Solving Ordinary Differential Equation II: Stiff and Differential-Algebraic Problems,, Springer-Verlag, (1991).   Google Scholar

[20]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms,, 2nd edition, (2006).   Google Scholar

[21]

N. Kanyamee and Z. Zhang, Comparison of a spectral collocation method and symplectic methods for Hamiltonian systems,, Int. J. Numer. Anal. Model., 8 (2011), 86.   Google Scholar

[22]

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[23]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem,, John Wiley & Sons, (1991).   Google Scholar

[24]

S. Liu and Z. Fu, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,, Phys. Lett. A, 289 (2001), 69.  doi: 10.1016/S0375-9601(01)00580-1.  Google Scholar

[25]

D. Schötzau and C. Schwab, Time discretization of parabolic problems by the $hp$-version of the discontinuous Galerkin finite element method,, SIAM J. Numer. Anal., 38 (2000), 837.  doi: 10.1137/S0036142999352394.  Google Scholar

[26]

D. Schötzau and C. Schwab, An $hp$ a-priori error analysis of the DG time-stepping method for initial value problems,, Calcolo, 37 (2000), 207.  doi: 10.1007/s100920070002.  Google Scholar

[27]

J. Shen and T. Tang, Spectral and High-order Methods Methods with Application,, Science Press, (2006).   Google Scholar

[28]

J. Shen, T. Tang and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications,, Springer Series in Computational Mathematics, (2011).  doi: 10.1007/978-3-540-71041-7.  Google Scholar

[29]

J. Shen and L. L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method,, Appl. Numer. Math., 57 (2007), 710.  doi: 10.1016/j.apnum.2006.07.012.  Google Scholar

[30]

A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,, Cambridge University Press, (1996).   Google Scholar

[31]

H. Tal-Ezer, Spectral methods in time for hyperbolic equations,, SIAM J. Numer. Anal., 23 (1986), 11.  doi: 10.1137/0723002.  Google Scholar

[32]

H. Tal-Ezer, Spectral methods in time for parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 1.  doi: 10.1137/0726001.  Google Scholar

[33]

J. G. Tang and H. P. Ma, Single and multi-interval Legendre $\tau$-methods in time for parabolic equations,, Adv. Comput. Math., 17 (2002), 349.  doi: 10.1023/A:1016273820035.  Google Scholar

[34]

J. G. Tang and H. P. Ma, A Legendre spectral method in time for first-order hyperbolic equations,, Appl. Numer. Math., 57 (2007), 1.  doi: 10.1016/j.apnum.2005.11.009.  Google Scholar

[35]

Z. Q. Wang and B. Y. Guo, Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations,, J. Sci. Comput., 52 (2012), 226.  doi: 10.1007/s10915-011-9538-7.  Google Scholar

[36]

T. P. Wihler, An a priori error analysis of the $hp$-version of the continuous Galerkin FEM for nonlinear initial value problems,, J. Sci. Comput., 25 (2005), 523.  doi: 10.1007/s10915-004-4796-2.  Google Scholar

[37]

X. Y. Wu, B. Wang and J. L. Xia, Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods,, BIT Numer. Math., 52 (2012), 773.  doi: 10.1007/s10543-012-0379-z.  Google Scholar

[38]

L. J. Yi and Z. Q. Wang, Legendre-Gauss-type collocation algorithms for nonlinear ordinary/ partial differential equations,, Int. J. Comput. Math.., ().  doi: 10.1080/00207160.2013.841901.  Google Scholar

[39]

S. S. Zhang, S. Y. Chen and H. P. Ma, Legendre spectral methods for initial-boundary value problem of Klein-Gordon-Zakharov equations,, Commun. Appl. Math. Comput., 26 (2012), 223.   Google Scholar

[40]

U. Zrahia and P. Bar-Yoseph, Space-time spectral element method for solution of second-order hyperbolic equations,, Comput. Methods Appl. Mech. Engrg., 116 (1994), 135.  doi: 10.1016/S0045-7825(94)80017-0.  Google Scholar

show all references

References:
[1]

I. Babuška and T. Janik, The $h$-$p$ version of the finite element method for parabolic equations: I. The $p$-version in time,, Numer. Methods Partial Differential Equations, 5 (1989), 363.  doi: 10.1002/num.1690050407.  Google Scholar

[2]

I. Babuška and T. Janik, The $h$-$p$ version of the finite element method for parabolic equations: II. The $h$-$p$ version in time,, Numer. Methods Partial Differential Equations, 6 (1990), 343.  doi: 10.1002/num.1690060406.  Google Scholar

[3]

P. Bar-Yoseph, E. Moses, U. Zrahia and A. L. Yarin, Space-time spectral element methods for one-dimensional nonlinear advection-diffusion problems,, J. Comput. Phys., 119 (1995), 62.  doi: 10.1006/jcph.1995.1116.  Google Scholar

[4]

C. Bernardi and Y. Maday, Spectral Methods, in Handbook of Numerical Analysis,, (eds. P. G. Ciarlet and J. L. Lions), (1997).  doi: 10.1016/S1570-8659(97)80003-8.  Google Scholar

[5]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, 2nd edition, (2001).   Google Scholar

[6]

J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods,, John Wiley & Sons, (1987).   Google Scholar

[7]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains,, Springer-Verlag, (2006).   Google Scholar

[8]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics,, Springer-Verlag, (2007).   Google Scholar

[9]

J. M. Franco, Runge-Kutta-Nyström method adapted to the numerical integration of perturbed oscillators,, Comput. Phys. Comm., 147 (2002), 770.  doi: 10.1016/S0010-4655(02)00460-5.  Google Scholar

[10]

J. M. Franco, I. Gómez and L. Rández, Four-stage symplectic and P-stable SDIRKN methods with dispersion of high order,, Numer. Algor., 26 (2001), 347.  doi: 10.1023/A:1016629706668.  Google Scholar

[11]

D. Funaro, Polynomial Approximations of Differential Equations,, Springer-Verlag, (1992).   Google Scholar

[12]

I. Glenn, S. Brian and W. Rodney, Spectral methods in time for a class of parabolic partial differential equations,, J. Comput. Phys., 102 (1992), 88.  doi: 10.1016/S0021-9991(05)80008-7.  Google Scholar

[13]

D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications,, Philadelphia, (1977).   Google Scholar

[14]

B. Y. Guo, Spectral Methods and Their Applications,, World Scientific, (1998).  doi: 10.1142/3662.  Google Scholar

[15]

B. Y. Guo and Z. Q. Wang, Legendre-Gauss collocation methods for ordinary differential equations,, Adv. Comput. Math., 30 (2009), 249.  doi: 10.1007/s10444-008-9067-6.  Google Scholar

[16]

B. Y. Guo and Z. Q. Wang, A spectral collocation method for solving initial value problems of first order ordinary differential equations,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1029.   Google Scholar

[17]

B. Y. Guo and J. P. Yan, Legendre-Gauss collocation methods for initial value problems of second ordinary differential equations,, Appl. Numer. Math., 59 (2009), 1386.  doi: 10.1016/j.apnum.2008.08.007.  Google Scholar

[18]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equation I: Nonstiff Problems,, Springer-Verlag, (1987).   Google Scholar

[19]

E. Hairer and G. Wanner, Solving Ordinary Differential Equation II: Stiff and Differential-Algebraic Problems,, Springer-Verlag, (1991).   Google Scholar

[20]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms,, 2nd edition, (2006).   Google Scholar

[21]

N. Kanyamee and Z. Zhang, Comparison of a spectral collocation method and symplectic methods for Hamiltonian systems,, Int. J. Numer. Anal. Model., 8 (2011), 86.   Google Scholar

[22]

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[23]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem,, John Wiley & Sons, (1991).   Google Scholar

[24]

S. Liu and Z. Fu, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,, Phys. Lett. A, 289 (2001), 69.  doi: 10.1016/S0375-9601(01)00580-1.  Google Scholar

[25]

D. Schötzau and C. Schwab, Time discretization of parabolic problems by the $hp$-version of the discontinuous Galerkin finite element method,, SIAM J. Numer. Anal., 38 (2000), 837.  doi: 10.1137/S0036142999352394.  Google Scholar

[26]

D. Schötzau and C. Schwab, An $hp$ a-priori error analysis of the DG time-stepping method for initial value problems,, Calcolo, 37 (2000), 207.  doi: 10.1007/s100920070002.  Google Scholar

[27]

J. Shen and T. Tang, Spectral and High-order Methods Methods with Application,, Science Press, (2006).   Google Scholar

[28]

J. Shen, T. Tang and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications,, Springer Series in Computational Mathematics, (2011).  doi: 10.1007/978-3-540-71041-7.  Google Scholar

[29]

J. Shen and L. L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method,, Appl. Numer. Math., 57 (2007), 710.  doi: 10.1016/j.apnum.2006.07.012.  Google Scholar

[30]

A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,, Cambridge University Press, (1996).   Google Scholar

[31]

H. Tal-Ezer, Spectral methods in time for hyperbolic equations,, SIAM J. Numer. Anal., 23 (1986), 11.  doi: 10.1137/0723002.  Google Scholar

[32]

H. Tal-Ezer, Spectral methods in time for parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 1.  doi: 10.1137/0726001.  Google Scholar

[33]

J. G. Tang and H. P. Ma, Single and multi-interval Legendre $\tau$-methods in time for parabolic equations,, Adv. Comput. Math., 17 (2002), 349.  doi: 10.1023/A:1016273820035.  Google Scholar

[34]

J. G. Tang and H. P. Ma, A Legendre spectral method in time for first-order hyperbolic equations,, Appl. Numer. Math., 57 (2007), 1.  doi: 10.1016/j.apnum.2005.11.009.  Google Scholar

[35]

Z. Q. Wang and B. Y. Guo, Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations,, J. Sci. Comput., 52 (2012), 226.  doi: 10.1007/s10915-011-9538-7.  Google Scholar

[36]

T. P. Wihler, An a priori error analysis of the $hp$-version of the continuous Galerkin FEM for nonlinear initial value problems,, J. Sci. Comput., 25 (2005), 523.  doi: 10.1007/s10915-004-4796-2.  Google Scholar

[37]

X. Y. Wu, B. Wang and J. L. Xia, Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods,, BIT Numer. Math., 52 (2012), 773.  doi: 10.1007/s10543-012-0379-z.  Google Scholar

[38]

L. J. Yi and Z. Q. Wang, Legendre-Gauss-type collocation algorithms for nonlinear ordinary/ partial differential equations,, Int. J. Comput. Math.., ().  doi: 10.1080/00207160.2013.841901.  Google Scholar

[39]

S. S. Zhang, S. Y. Chen and H. P. Ma, Legendre spectral methods for initial-boundary value problem of Klein-Gordon-Zakharov equations,, Commun. Appl. Math. Comput., 26 (2012), 223.   Google Scholar

[40]

U. Zrahia and P. Bar-Yoseph, Space-time spectral element method for solution of second-order hyperbolic equations,, Comput. Methods Appl. Mech. Engrg., 116 (1994), 135.  doi: 10.1016/S0045-7825(94)80017-0.  Google Scholar

[1]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[2]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[3]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[4]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[5]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[6]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[7]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[8]

Maria Do Rosario Grossinho, Rogério Martins. Subharmonic oscillations for some second-order differential equations without Landesman-Lazer conditions. Conference Publications, 2001, 2001 (Special) : 174-181. doi: 10.3934/proc.2001.2001.174

[9]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[10]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[11]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[12]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[13]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020009

[14]

Paola Buttazzoni, Alessandro Fonda. Periodic perturbations of scalar second order differential equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 451-455. doi: 10.3934/dcds.1997.3.451

[15]

Kunquan Lan. Eigenvalues of second order differential equations with singularities. Conference Publications, 2001, 2001 (Special) : 241-247. doi: 10.3934/proc.2001.2001.241

[16]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[17]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[18]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[19]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[20]

Lassi Roininen, Petteri Piiroinen, Markku Lehtinen. Constructing continuous stationary covariances as limits of the second-order stochastic difference equations. Inverse Problems & Imaging, 2013, 7 (2) : 611-647. doi: 10.3934/ipi.2013.7.611

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]