\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A reaction-diffusion model of dengue transmission

Abstract Related Papers Cited by
  • This paper is devoted to the mathematical analysis of a reaction-diffusion model of dengue transmission. In the case of a bounded spatial habitat, we obtain the local stability as well as the global stability of either disease-free or endemic steady state in terms of the basic reproduction number $\mathcal{R}_0$. In the case of an unbounded spatial habitat, we establish the existence of the traveling wave solutions connecting the two constant steady states when $\mathcal{R}_0>1$, and the nonexistence of the traveling wave solutions that connect the disease-free steady state itself when $\mathcal{R}_0<1$. Numerical simulations are performed to illustrate the main analytic results.
    Mathematics Subject Classification: Primary: 34D20, 35C07; Secondary: 35Q92, 92D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Cai, S. Guo, X. Li and M. Ghosh, Global dynamics of a dengue epidemic mathematical model, Chaos, Solitons and Fractals, 42 (2009), 2297-2304.doi: 10.1016/j.chaos.2009.03.130.

    [2]

    V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.doi: 10.1016/0025-5564(78)90006-8.

    [3]
    [4]

    S. Chen and J. Shi, Global attractivity of equilibrium in Gierer-Meinhardt system with activator production satutation and gene expression time delays, Nonlinear Analysis: Real Wirld Applications, 14 (2013), 1871-1886.doi: 10.1016/j.nonrwa.2012.12.004.

    [5]

    Y. Du and S. H. Hsu, A diffusive predator-prey model: In heterogeneous envirenmen, J. Differential Equations, 203 (2004), 331-364.doi: 10.1016/j.jde.2004.05.010.

    [6]

    L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131-151.doi: 10.1016/S0025-5564(98)10003-2.

    [7]

    J. Fang and J. Wu, Monotone traveling waves for delayed Lotka-Volterra competition systems, Discrete Contin. Dyn. Syst., 32 (2012), 3043-3058.doi: 10.3934/dcds.2012.32.3043.

    [8]

    Q. Gan, R. Xu and P. Yang, Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay, IMA J. Appl. Math., 75 (2010), 392-417.doi: 10.1093/imamat/hxq009.

    [9]

    S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 11-25.doi: 10.1016/j.mbs.2008.05.002.

    [10]

    D. J. Gubler, Dengue/dengue haemorrhagic fever: History and current status, Novartis Foundation Symposium, 277 (2006), 3-16.doi: 10.1002/0470058005.ch2.

    [11]

    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.

    [12]

    C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.doi: 10.1088/0951-7715/26/1/121.

    [13]

    J. Huang and X. Zou, Existence of travelling wavefronts of delayed reaction diffusion systems without monotonicity, Discrete Contin. Dyn. Syst., 9 (2003), 925-936.doi: 10.3934/dcds.2003.9.925.

    [14]

    W. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dyn. Differ. Equ., 24 (2012), 633-644.doi: 10.1007/s10884-012-9255-4.

    [15]

    T. W. Hwang and F. B. Wang, Dynamics of dengue fever trasmission model with crowding effect in human population and spatial variation, Discrete Contin. Dyn. Syst. (Ser. B), 18 (2013), 147-161.doi: 10.3934/dcdsb.2013.18.147.

    [16]

    X. Lin, P. Weng and C. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dyn. Differ. Equ., 23 (2011), 903-921.doi: 10.1007/s10884-011-9220-7.

    [17]

    F. X. Jousset, Geographic A. aegypti strains and dengue-2 virus: Susceptibility, ability to transmit to vertebrate and transovarial transmission, Annales de Virologie, 132 (1981), 357-370.doi: 10.1016/S0769-2617(81)80006-8.

    [18]

    M. Y. L and H. Shu, Global dynamics of an in-host viral model with intracelluar delay, Bull. Math. Biol., 72 (2010), 1492-1505.doi: 10.1007/s11538-010-9503-x.

    [19]

    W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1257.doi: 10.1088/0951-7715/19/6/003.

    [20]

    S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential. Equations, 171 (2001), 294-314.doi: 10.1006/jdeq.2000.3846.

    [21]

    R. Martin and H. Smith, Absract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.doi: 10.2307/2001590.

    [22]

    C. C. McCluskey, Complete global stablity for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anaysis: Real World Applications, 11 (2010), 55-59.doi: 10.1016/j.nonrwa.2008.10.014.

    [23]
    [24]

    J. D. Murray, Mathematical Biology: I. An Introduction, Springer, New York, 2002.

    [25]

    C. V. Pao, Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays, Nonlinear Analalysis: Real World Application, 5 (2004), 91-104.doi: 10.1016/S1468-1218(03)00018-X.

    [26]

    L. Rosen and D. A. Shroyer, Transovarial transmission of dengue viruses by mosquitoes: A. Albopictus and A. Aegypti, Am. J. Trop. Med. Hyg., 32 (1983), 1108-1119.

    [27]

    J. J. Tewa, J. L. Dimi and S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos, Solitions and Fractals, 39 (2009), 936-941.doi: 10.1016/j.chaos.2007.01.069.

    [28]

    H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.doi: 10.1016/S0022-0396(03)00175-X.

    [29]

    A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, in Translations of Mathematical Monographs, 140, Amer. Math. Soc., Providence, 1994.

    [30]

    W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.doi: 10.1137/090775890.

    [31]

    X.-S. Wang, H. Wang and J. Wu, Traveling waves of diffusive perdator-prey systems: disease putbreak propagatton, Discrete Contin. Dyn. Syst., 32 (2013), 3302-3324.

    [32]

    Z. C. Wang, W. T. Li and S. G. Ruan, Traveling wave fronts in reaction-diffusion systems with spatiotemporal delays, J. Differential Equations, 222 (2006), 185-232.doi: 10.1016/j.jde.2005.08.010.

    [33]

    P. Weng and Z. Xu, Wavefronts for a global reaction-diffusion systems with inifinite distributed delay, J. Math. Anal. Appl., 345 (2008), 522-534.doi: 10.1016/j.jmaa.2008.04.039.

    [34]
    [35]

    J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delays, J. Dyn. Differ. Equ., 13 (2001), 651-687.doi: 10.1023/A:1016690424892.

    [36]

    R. Xu and Z. Ma, An HBV model with diffusion and time delay, J. Theor. Biol., 257 (2009), 449-509.doi: 10.1016/j.jtbi.2009.01.001.

    [37]

    X.-Q. Zhao and W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. (Ser.B), 4 (2004), 1117-1128.doi: 10.3934/dcdsb.2004.4.1117.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(239) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return