Citation: |
[1] |
J. M. Arrieta, A. Rodriguez-Bernal and Ph. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Scuola. Norm. Super. Pisa Cl. Sci., 3 (2004), 1-15. |
[2] |
M. Fila and G. M. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations, 7 (1994), 811-821. |
[3] |
M. Fila, J. Taskinen and M. Winkler, Convergence to a singular steady state of a parabolic equation with gradient blow-up, Appl. Math. Lett., 20 (2007), 578-582.doi: 10.1016/j.aml.2006.07.004. |
[4] |
J.-S. Guo and B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst., 20 (2008), 927-937.doi: 10.3934/dcds.2008.20.927. |
[5] |
M. Hesaaraki and A. Moameni, Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in $\mathbbR^N$, Michigan Math. J., 52 (2004), 375-389.doi: 10.1307/mmj/1091112081. |
[6] |
M. Kardar, G. Parisi and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986), 889-892. |
[7] |
J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A., 38 (1988), 4271-4283.doi: 10.1103/PhysRevA.38.4271. |
[8] |
Y. X. Li and Ph. Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains, Commun. Math. Phys., 293 (2010), 499-517.doi: 10.1007/s00220-009-0936-8. |
[9] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 2005. |
[10] |
P. Quittner and Ph. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Verlag, Basel, 2007. |
[11] |
W. Rudin, Principles of Mathematical Analysis, $3^{rd}$ edition, McGraw-Hill, 2007. |
[12] |
Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations, 15 (2002), 237-256. |
[13] |
Ph. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differential Equations, 2001 (2001), 1-19. |
[14] |
Ph. Souplet and J. L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Contin. Dyn. Syst., 14 (2006), 221-234. |
[15] |
Ph. Souplet and Q. S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, J. dÁnalyse Math., 99 (2006), 335-396.doi: 10.1007/BF02789452. |
[16] |
Z. C. Zhang and B. Hu, Gradient blowup rate for a semilinear parabolic equation, Discrete Contin. Dyn. Syst., 26 (2010), 767-779.doi: 10.3934/dcds.2010.26.767. |
[17] |
Z. C. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity, Nonlinear Anal., 72 (2010), 4594-4601.doi: 10.1016/j.na.2010.02.036. |
[18] |
Z. C. Zhang and Y. Y. Li, Gradient blowup solutions of a semilinear parabolic equation with exponential source, Comm. Pure Appl. Anal., 12 (2013), 269-280.doi: 10.3934/cpaa.2013.12.269. |
[19] |
Z. C. Zhang and Y. Y. Li, Boundedness of global solutions for a heat equation with exponential gradient source, Abstr. Appl. Anal., 2012 (2012), 1-10.doi: doi:10.1155/2012/398049. |
[20] |
Z. C. Zhang and Z. J. Li, A note on gradient blowup rate of the inhomogeneous Hamilton-Jacobi equations, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 678-686.doi: 10.1016/S0252-9602(13)60029-6. |
[21] |
L. P. Zhu and Z. C. Zhang, Rate of approach to the steady state for a diffusion-convection equation on annular domains, Electron. J. Qual. Theory Differ. Equ., 39 (2012), 1-10. |