November  2014, 19(9): 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  May 2013 Revised  September 2013 Published  September 2014

Throughout this paper, we consider the equation \[u_t - \Delta u = e^{|\nabla u|}\] with homogeneous Dirichlet boundary condition. One of our main goals is to show that the existence of global classical solution can derive the existence of classical stationary solution, and the global solution must converge to the stationary solution in $C(\overline{\Omega})$. On the contrary, the existence of the stationary solution also implies the global existence of the classical solution at least in the radial case. The other one is to show that finite time gradient blowup will occur for large initial data or domains with small measure.
Citation: Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019
References:
[1]

J. M. Arrieta, A. Rodriguez-Bernal and Ph. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Scuola. Norm. Super. Pisa Cl. Sci., 3 (2004), 1-15.

[2]

M. Fila and G. M. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations, 7 (1994), 811-821.

[3]

M. Fila, J. Taskinen and M. Winkler, Convergence to a singular steady state of a parabolic equation with gradient blow-up, Appl. Math. Lett., 20 (2007), 578-582. doi: 10.1016/j.aml.2006.07.004.

[4]

J.-S. Guo and B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst., 20 (2008), 927-937. doi: 10.3934/dcds.2008.20.927.

[5]

M. Hesaaraki and A. Moameni, Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in $\mathbbR^N$, Michigan Math. J., 52 (2004), 375-389. doi: 10.1307/mmj/1091112081.

[6]

M. Kardar, G. Parisi and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986), 889-892.

[7]

J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A., 38 (1988), 4271-4283. doi: 10.1103/PhysRevA.38.4271.

[8]

Y. X. Li and Ph. Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains, Commun. Math. Phys., 293 (2010), 499-517. doi: 10.1007/s00220-009-0936-8.

[9]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 2005.

[10]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Verlag, Basel, 2007.

[11]

W. Rudin, Principles of Mathematical Analysis, $3^{rd}$ edition, McGraw-Hill, 2007.

[12]

Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations, 15 (2002), 237-256.

[13]

Ph. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differential Equations, 2001 (2001), 1-19.

[14]

Ph. Souplet and J. L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Contin. Dyn. Syst., 14 (2006), 221-234.

[15]

Ph. Souplet and Q. S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, J. dÁnalyse Math., 99 (2006), 335-396. doi: 10.1007/BF02789452.

[16]

Z. C. Zhang and B. Hu, Gradient blowup rate for a semilinear parabolic equation, Discrete Contin. Dyn. Syst., 26 (2010), 767-779. doi: 10.3934/dcds.2010.26.767.

[17]

Z. C. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity, Nonlinear Anal., 72 (2010), 4594-4601. doi: 10.1016/j.na.2010.02.036.

[18]

Z. C. Zhang and Y. Y. Li, Gradient blowup solutions of a semilinear parabolic equation with exponential source, Comm. Pure Appl. Anal., 12 (2013), 269-280. doi: 10.3934/cpaa.2013.12.269.

[19]

Z. C. Zhang and Y. Y. Li, Boundedness of global solutions for a heat equation with exponential gradient source, Abstr. Appl. Anal., 2012 (2012), 1-10. doi: doi:10.1155/2012/398049.

[20]

Z. C. Zhang and Z. J. Li, A note on gradient blowup rate of the inhomogeneous Hamilton-Jacobi equations, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 678-686. doi: 10.1016/S0252-9602(13)60029-6.

[21]

L. P. Zhu and Z. C. Zhang, Rate of approach to the steady state for a diffusion-convection equation on annular domains, Electron. J. Qual. Theory Differ. Equ., 39 (2012), 1-10.

show all references

References:
[1]

J. M. Arrieta, A. Rodriguez-Bernal and Ph. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Scuola. Norm. Super. Pisa Cl. Sci., 3 (2004), 1-15.

[2]

M. Fila and G. M. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations, 7 (1994), 811-821.

[3]

M. Fila, J. Taskinen and M. Winkler, Convergence to a singular steady state of a parabolic equation with gradient blow-up, Appl. Math. Lett., 20 (2007), 578-582. doi: 10.1016/j.aml.2006.07.004.

[4]

J.-S. Guo and B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst., 20 (2008), 927-937. doi: 10.3934/dcds.2008.20.927.

[5]

M. Hesaaraki and A. Moameni, Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in $\mathbbR^N$, Michigan Math. J., 52 (2004), 375-389. doi: 10.1307/mmj/1091112081.

[6]

M. Kardar, G. Parisi and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986), 889-892.

[7]

J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A., 38 (1988), 4271-4283. doi: 10.1103/PhysRevA.38.4271.

[8]

Y. X. Li and Ph. Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains, Commun. Math. Phys., 293 (2010), 499-517. doi: 10.1007/s00220-009-0936-8.

[9]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 2005.

[10]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Verlag, Basel, 2007.

[11]

W. Rudin, Principles of Mathematical Analysis, $3^{rd}$ edition, McGraw-Hill, 2007.

[12]

Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations, 15 (2002), 237-256.

[13]

Ph. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differential Equations, 2001 (2001), 1-19.

[14]

Ph. Souplet and J. L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Contin. Dyn. Syst., 14 (2006), 221-234.

[15]

Ph. Souplet and Q. S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, J. dÁnalyse Math., 99 (2006), 335-396. doi: 10.1007/BF02789452.

[16]

Z. C. Zhang and B. Hu, Gradient blowup rate for a semilinear parabolic equation, Discrete Contin. Dyn. Syst., 26 (2010), 767-779. doi: 10.3934/dcds.2010.26.767.

[17]

Z. C. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity, Nonlinear Anal., 72 (2010), 4594-4601. doi: 10.1016/j.na.2010.02.036.

[18]

Z. C. Zhang and Y. Y. Li, Gradient blowup solutions of a semilinear parabolic equation with exponential source, Comm. Pure Appl. Anal., 12 (2013), 269-280. doi: 10.3934/cpaa.2013.12.269.

[19]

Z. C. Zhang and Y. Y. Li, Boundedness of global solutions for a heat equation with exponential gradient source, Abstr. Appl. Anal., 2012 (2012), 1-10. doi: doi:10.1155/2012/398049.

[20]

Z. C. Zhang and Z. J. Li, A note on gradient blowup rate of the inhomogeneous Hamilton-Jacobi equations, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 678-686. doi: 10.1016/S0252-9602(13)60029-6.

[21]

L. P. Zhu and Z. C. Zhang, Rate of approach to the steady state for a diffusion-convection equation on annular domains, Electron. J. Qual. Theory Differ. Equ., 39 (2012), 1-10.

[1]

Nan Chen, Cheng Wang, Steven Wise. Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1689-1711. doi: 10.3934/dcdsb.2016018

[2]

Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211

[3]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[4]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[5]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[6]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[7]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[8]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic and Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[9]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control and Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[10]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[11]

Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086

[12]

Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial and Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072

[13]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[14]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[15]

Yaoyao Luo, Run Xu. The nonexistence of global solution for system of q-difference inequalities. Mathematical Foundations of Computing, 2020, 3 (3) : 195-203. doi: 10.3934/mfc.2020019

[16]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[17]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[18]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[19]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[20]

Dehua Wang. Global solution for the mixture of real compressible reacting flows in combustion. Communications on Pure and Applied Analysis, 2004, 3 (4) : 775-790. doi: 10.3934/cpaa.2004.3.775

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]