November  2014, 19(9): 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  May 2013 Revised  September 2013 Published  September 2014

Throughout this paper, we consider the equation \[u_t - \Delta u = e^{|\nabla u|}\] with homogeneous Dirichlet boundary condition. One of our main goals is to show that the existence of global classical solution can derive the existence of classical stationary solution, and the global solution must converge to the stationary solution in $C(\overline{\Omega})$. On the contrary, the existence of the stationary solution also implies the global existence of the classical solution at least in the radial case. The other one is to show that finite time gradient blowup will occur for large initial data or domains with small measure.
Citation: Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019
References:
[1]

J. M. Arrieta, A. Rodriguez-Bernal and Ph. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena,, Ann. Scuola. Norm. Super. Pisa Cl. Sci., 3 (2004), 1.   Google Scholar

[2]

M. Fila and G. M. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations,, Differential Integral Equations, 7 (1994), 811.   Google Scholar

[3]

M. Fila, J. Taskinen and M. Winkler, Convergence to a singular steady state of a parabolic equation with gradient blow-up,, Appl. Math. Lett., 20 (2007), 578.  doi: 10.1016/j.aml.2006.07.004.  Google Scholar

[4]

J.-S. Guo and B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term,, Discrete Contin. Dyn. Syst., 20 (2008), 927.  doi: 10.3934/dcds.2008.20.927.  Google Scholar

[5]

M. Hesaaraki and A. Moameni, Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in $\mathbbR^N$,, Michigan Math. J., 52 (2004), 375.  doi: 10.1307/mmj/1091112081.  Google Scholar

[6]

M. Kardar, G. Parisi and Y. C. Zhang, Dynamic scaling of growing interfaces,, Phys. Rev. Lett., 56 (1986), 889.   Google Scholar

[7]

J. Krug and H. Spohn, Universality classes for deterministic surface growth,, Phys. Rev. A., 38 (1988), 4271.  doi: 10.1103/PhysRevA.38.4271.  Google Scholar

[8]

Y. X. Li and Ph. Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains,, Commun. Math. Phys., 293 (2010), 499.  doi: 10.1007/s00220-009-0936-8.  Google Scholar

[9]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (2005).   Google Scholar

[10]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, (2007).   Google Scholar

[11]

W. Rudin, Principles of Mathematical Analysis,, $3^{rd}$ edition, (2007).   Google Scholar

[12]

Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions,, Differential Integral Equations, 15 (2002), 237.   Google Scholar

[13]

Ph. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Electron. J. Differential Equations, 2001 (2001), 1.   Google Scholar

[14]

Ph. Souplet and J. L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem,, Discrete Contin. Dyn. Syst., 14 (2006), 221.   Google Scholar

[15]

Ph. Souplet and Q. S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations,, J. dÁnalyse Math., 99 (2006), 335.  doi: 10.1007/BF02789452.  Google Scholar

[16]

Z. C. Zhang and B. Hu, Gradient blowup rate for a semilinear parabolic equation,, Discrete Contin. Dyn. Syst., 26 (2010), 767.  doi: 10.3934/dcds.2010.26.767.  Google Scholar

[17]

Z. C. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity,, Nonlinear Anal., 72 (2010), 4594.  doi: 10.1016/j.na.2010.02.036.  Google Scholar

[18]

Z. C. Zhang and Y. Y. Li, Gradient blowup solutions of a semilinear parabolic equation with exponential source,, Comm. Pure Appl. Anal., 12 (2013), 269.  doi: 10.3934/cpaa.2013.12.269.  Google Scholar

[19]

Z. C. Zhang and Y. Y. Li, Boundedness of global solutions for a heat equation with exponential gradient source,, Abstr. Appl. Anal., 2012 (2012), 1.  doi: doi:10.1155/2012/398049.  Google Scholar

[20]

Z. C. Zhang and Z. J. Li, A note on gradient blowup rate of the inhomogeneous Hamilton-Jacobi equations,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 678.  doi: 10.1016/S0252-9602(13)60029-6.  Google Scholar

[21]

L. P. Zhu and Z. C. Zhang, Rate of approach to the steady state for a diffusion-convection equation on annular domains,, Electron. J. Qual. Theory Differ. Equ., 39 (2012), 1.   Google Scholar

show all references

References:
[1]

J. M. Arrieta, A. Rodriguez-Bernal and Ph. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena,, Ann. Scuola. Norm. Super. Pisa Cl. Sci., 3 (2004), 1.   Google Scholar

[2]

M. Fila and G. M. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations,, Differential Integral Equations, 7 (1994), 811.   Google Scholar

[3]

M. Fila, J. Taskinen and M. Winkler, Convergence to a singular steady state of a parabolic equation with gradient blow-up,, Appl. Math. Lett., 20 (2007), 578.  doi: 10.1016/j.aml.2006.07.004.  Google Scholar

[4]

J.-S. Guo and B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term,, Discrete Contin. Dyn. Syst., 20 (2008), 927.  doi: 10.3934/dcds.2008.20.927.  Google Scholar

[5]

M. Hesaaraki and A. Moameni, Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in $\mathbbR^N$,, Michigan Math. J., 52 (2004), 375.  doi: 10.1307/mmj/1091112081.  Google Scholar

[6]

M. Kardar, G. Parisi and Y. C. Zhang, Dynamic scaling of growing interfaces,, Phys. Rev. Lett., 56 (1986), 889.   Google Scholar

[7]

J. Krug and H. Spohn, Universality classes for deterministic surface growth,, Phys. Rev. A., 38 (1988), 4271.  doi: 10.1103/PhysRevA.38.4271.  Google Scholar

[8]

Y. X. Li and Ph. Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains,, Commun. Math. Phys., 293 (2010), 499.  doi: 10.1007/s00220-009-0936-8.  Google Scholar

[9]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (2005).   Google Scholar

[10]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, (2007).   Google Scholar

[11]

W. Rudin, Principles of Mathematical Analysis,, $3^{rd}$ edition, (2007).   Google Scholar

[12]

Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions,, Differential Integral Equations, 15 (2002), 237.   Google Scholar

[13]

Ph. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities,, Electron. J. Differential Equations, 2001 (2001), 1.   Google Scholar

[14]

Ph. Souplet and J. L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem,, Discrete Contin. Dyn. Syst., 14 (2006), 221.   Google Scholar

[15]

Ph. Souplet and Q. S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations,, J. dÁnalyse Math., 99 (2006), 335.  doi: 10.1007/BF02789452.  Google Scholar

[16]

Z. C. Zhang and B. Hu, Gradient blowup rate for a semilinear parabolic equation,, Discrete Contin. Dyn. Syst., 26 (2010), 767.  doi: 10.3934/dcds.2010.26.767.  Google Scholar

[17]

Z. C. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity,, Nonlinear Anal., 72 (2010), 4594.  doi: 10.1016/j.na.2010.02.036.  Google Scholar

[18]

Z. C. Zhang and Y. Y. Li, Gradient blowup solutions of a semilinear parabolic equation with exponential source,, Comm. Pure Appl. Anal., 12 (2013), 269.  doi: 10.3934/cpaa.2013.12.269.  Google Scholar

[19]

Z. C. Zhang and Y. Y. Li, Boundedness of global solutions for a heat equation with exponential gradient source,, Abstr. Appl. Anal., 2012 (2012), 1.  doi: doi:10.1155/2012/398049.  Google Scholar

[20]

Z. C. Zhang and Z. J. Li, A note on gradient blowup rate of the inhomogeneous Hamilton-Jacobi equations,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 678.  doi: 10.1016/S0252-9602(13)60029-6.  Google Scholar

[21]

L. P. Zhu and Z. C. Zhang, Rate of approach to the steady state for a diffusion-convection equation on annular domains,, Electron. J. Qual. Theory Differ. Equ., 39 (2012), 1.   Google Scholar

[1]

Nan Chen, Cheng Wang, Steven Wise. Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1689-1711. doi: 10.3934/dcdsb.2016018

[2]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[3]

Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211

[4]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[5]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[6]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[7]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[8]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[9]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[10]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[11]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[12]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[13]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[14]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[15]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[16]

Dehua Wang. Global solution for the mixture of real compressible reacting flows in combustion. Communications on Pure & Applied Analysis, 2004, 3 (4) : 775-790. doi: 10.3934/cpaa.2004.3.775

[17]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[18]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[19]

Liuyang Yuan, Zhongping Wan, Qiuhua Tang. A criterion for an approximation global optimal solution based on the filled functions. Journal of Industrial & Management Optimization, 2016, 12 (1) : 375-387. doi: 10.3934/jimo.2016.12.375

[20]

Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial & Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]