• Previous Article
    Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach
  • DCDS-B Home
  • This Issue
  • Next Article
    Some paradoxical effects of the advection on a class of diffusive equations in Ecology
December  2014, 19(10): 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

Inside dynamics of solutions of integro-differential equations

1. 

INRA, UR 546 Biostatistique et Processus Spatiaux (BioSP), F-84914 Avignon, France, France, France, France

Received  July 2013 Revised  January 2014 Published  October 2014

In this paper, we investigate the inside dynamics of the positive solutions of integro-differential equations \begin{equation*} \partial_t u(t,x)= (J\star u)(t,x) -u(t,x) + f(u(t,x)), \ t>0 \hbox{ and } x\in\mathbb{R}, \end{equation*} with both thin-tailed and fat-tailed dispersal kernels $J$ and a monostable reaction term $f.$ The notion of inside dynamics has been introduced to characterize traveling waves of some reaction-diffusion equations [23]. Assuming that the solution is made of several fractions $\upsilon^i\ge 0$ ($i\in I \subset \mathbb{N}$), its inside dynamics is given by the spatio-temporal evolution of $\upsilon^i$. According to this dynamics, the traveling waves can be classified in two categories: pushed and pulled waves. For thin-tailed kernels, we observe no qualitative differences between the traveling waves of the above integro-differential equations and the traveling waves of the classical reaction-diffusion equations. In particular, in the KPP case ($f(u)\leq f'(0)u$ for all $u\in(0,1)$) we prove that all the traveling waves are pulled. On the other hand for fat-tailed kernels, the integro-differential equations do not admit any traveling waves. Therefore, to analyse the inside dynamics of a solution in this case, we introduce new notions of pulled and pushed solutions. Within this new framework, we provide analytical and numerical results showing that the solutions of integro-differential equations involving a fat-tailed dispersal kernel are pushed. Our results have applications in population genetics. They show that the existence of long distance dispersal events during a colonization tend to preserve the genetic diversity.
Citation: Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057
References:
[1]

H. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (1977).  Google Scholar

[2]

H. G. Aronson and D. G. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in Partial Differential Equations and Related Topics, 446 (1975), 5-49. doi: 10.1007/BFb0070595.  Google Scholar

[3]

D. G Aronson and H. F Weinberger, Multidimensional non-linear diffusion arising in population-genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

F. Austerlitz and P. H. Garnier-Géré, Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: Interaction of life cycle, pollen flow and seed long-distance dispersal, Heredity, 90 (2003), 282-290. doi: 10.1038/sj.hdy.6800243.  Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648. doi: 10.1002/cpa.21389.  Google Scholar

[6]

G. Bohrer, R. Nathan and S. Volis, Effects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scales, J. Ecol., 93 (2005), 1029-1040. doi: 10.1111/j.1365-2745.2005.01048.x.  Google Scholar

[7]

O. Bonnefon, J. Garnier, F. Hamel and L. Roques, Inside dynamics of delayed traveling waves, Math. Model. Nat. Phenom., 8 (2013), 42-59. doi: 10.1051/mmnp/20138305.  Google Scholar

[8]

O. Bonnefon, J. Coville, J. Garnier, F. Hamel and L. Roques, The spatio-temporal dynamics of neutral genetic diversity,, Preprint., ().  doi: 10.1016/j.ecocom.2014.05.003.  Google Scholar

[9]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), iv+190. doi: 10.1090/memo/0285.  Google Scholar

[10]

M. Cain, B. Milligan and A. Strand, Long distance seed dispersal in plant populations, Am. J. Bot., 87 (2000), 1217-1227. doi: 10.2307/2656714.  Google Scholar

[11]

A. Carr and J. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132, (2004), 2433-2439. doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[12]

J. S. Clark, Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord, Am. Nat., 152 (1998), 204-224. doi: 10.1086/286162.  Google Scholar

[13]

J. S. Clark, C. Fastie, G. Hurtt, S. T. Jackson, C. Johnson, G. A. King, M. Lewis, J. Lynch, S. Pacala, C. Prentice, E. W. Schupp, T. Webb III and P. Wyckoff, Reid's paradox of rapid plant migration, BioScience, 48 (1998), 13-24. doi: 10.2307/1313224.  Google Scholar

[14]

J. Coville and L. Dupaigne, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1-29. doi: 10.1017/S0308210504000721.  Google Scholar

[15]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Diff. Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[16]

E. C. M. Crooks, Travelling fronts for monostable reaction-diffusion systems with gradient-dependence, Adv. Diff. Equations, 8 (2003), 279-314.  Google Scholar

[17]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Diff. Equations, 33 (1979), 58-73. doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[18]

J. P. Eckmann and C. E. Wayne, The nonlinear stability of front solutions for parabolic differential equations, Comm. Math. Phys., 161 (1994), 323-334. doi: 10.1007/BF02099781.  Google Scholar

[19]

J. Fayard, E. K. Klein and F. Lefèvre, Long distance dispersal and the fate of a gene from the colonization front, J. Evol. Biol., 22 (2009), 2171-2182. doi: 10.1111/j.1420-9101.2009.01832.x.  Google Scholar

[20]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, 1979.  Google Scholar

[21]

P. C. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.  Google Scholar

[22]

J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43 (2011), 1955-1974. doi: 10.1137/10080693X.  Google Scholar

[23]

J. Garnier, T. Giletti, F. Hamel and L. Roques, Inside dynamics of pulled and pushed fronts, J. Math. Pures Appl., 11 (2012), 173-188. doi: 10.3934/cpaa.2012.11.173.  Google Scholar

[24]

O. Hallatschek and D. R. Nelson, Gene surfing in expanding populations, Theor. Popul. Biol., 73 (2008), 158-170. doi: 10.1016/j.tpb.2007.08.008.  Google Scholar

[25]

Ja. I. Kanel, Certain problem of burning-theory equations, Dokl. Akad. Nauk SSSR, 136 (1961), 277-280.  Google Scholar

[26]

E. K. Klein, C. Lavigne and P. H. Gouyon, Mixing of propagules from discrete sources at long distance : Comparing a dispersal tail to an exponential, BMC Ecology, 6 (2006). Google Scholar

[27]

N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. Univ. Moscou, Sér A, 1 (1937) 1-26. Google Scholar

[28]

M. Kot, M. Lewis and P. Van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042. doi: 10.2307/2265698.  Google Scholar

[29]

J. G. Lambrinos, How interactions between ecology and evolution influence contemporary invasion dynamics, Ecol., 85 (2004), 2061-2070. doi: 10.1890/03-8013.  Google Scholar

[30]

K. S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov, J. Diff. Equations, 59 (1985), 44-70. doi: 10.1016/0022-0396(85)90137-8.  Google Scholar

[31]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222. doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[32]

D. Mollison, Spatial contact models for ecological and epidemic spread, J. R. Stat. Ser. B Stat. Methodol., 39 (1977),283-326.  Google Scholar

[33]

R. Nathan and H. Muller-Landau, Spatial patterns of seed dispersal, their determinants and consequences for recruitment, Trends Ecol. Evol., 15 (2000), 278-285. doi: 10.1016/S0169-5347(00)01874-7.  Google Scholar

[34]

J. M. Pringle, F. Lutscher and E. Glick, Going against the flow: effects of non-Gaussian dispersal kernels and reproduction over multiple generations, Mar. Ecol. Prog. Ser., 377 (2009), 13-17. doi: 10.3354/meps07836.  Google Scholar

[35]

C. Reid, The Origin of the British Flora, Dulau & Co, 1899. doi: 10.5962/bhl.title.7595.  Google Scholar

[36]

L. Roques, F. Hamel, J. Fayard, B. Fady and E. K. Klein, Recolonisation by diffusion can generate increasing rates of spread, Theor. Popul. Biol., 77 (2010), 205-212. doi: 10.1016/j.tpb.2010.02.002.  Google Scholar

[37]

L. Roques, J. Garnier, F. Hamel and E. Klein, Allee effect promotes diversity in traveling waves of colonization, Proc. Natl. Acad. Sci. USA, 109 (2012), 8828-8833. doi: 10.1073/pnas.1201695109.  Google Scholar

[38]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213-234. doi: 10.1017/S0308210500010258.  Google Scholar

[39]

F. Rothe, Convergence to pushed fronts, Rocky Mountain J. Math., 11 (1981), 617-634. doi: 10.1216/RMJ-1981-11-4-617.  Google Scholar

[40]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355. doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[41]

D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Diff. Equations, 25 (1977), 130-144. doi: 10.1016/0022-0396(77)90185-1.  Google Scholar

[42]

K. Schumacher, Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math., 316 (1980), 54-70. doi: 10.1515/crll.1980.316.54.  Google Scholar

[43]

J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[44]

A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci., 31 (1976), 307-315. doi: 10.1016/0025-5564(76)90087-0.  Google Scholar

[45]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187. doi: 10.1007/BF00279720.  Google Scholar

[46]

P. Turchin, Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants, Sinauer Associates, 1998. Google Scholar

[47]

K. Uchiyama, The behaviour of solutions of some non-linear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.  Google Scholar

[48]

M. O. Vlad, L. L. Cavalli-Sforza and J. Ross, Enhanced (hydrodynamic) transport induced by population growth in reaction-diffusion systems with application to population genetics, Proc. Natl. Acad. Sci. USA, 101 (2004), 10249-10253. doi: 10.1073/pnas.0403419101.  Google Scholar

[49]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028.  Google Scholar

[50]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol., 45 (2002), 511-548. doi: 10.1007/s00285-002-0169-3.  Google Scholar

show all references

References:
[1]

H. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (1977).  Google Scholar

[2]

H. G. Aronson and D. G. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in Partial Differential Equations and Related Topics, 446 (1975), 5-49. doi: 10.1007/BFb0070595.  Google Scholar

[3]

D. G Aronson and H. F Weinberger, Multidimensional non-linear diffusion arising in population-genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

F. Austerlitz and P. H. Garnier-Géré, Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: Interaction of life cycle, pollen flow and seed long-distance dispersal, Heredity, 90 (2003), 282-290. doi: 10.1038/sj.hdy.6800243.  Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648. doi: 10.1002/cpa.21389.  Google Scholar

[6]

G. Bohrer, R. Nathan and S. Volis, Effects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scales, J. Ecol., 93 (2005), 1029-1040. doi: 10.1111/j.1365-2745.2005.01048.x.  Google Scholar

[7]

O. Bonnefon, J. Garnier, F. Hamel and L. Roques, Inside dynamics of delayed traveling waves, Math. Model. Nat. Phenom., 8 (2013), 42-59. doi: 10.1051/mmnp/20138305.  Google Scholar

[8]

O. Bonnefon, J. Coville, J. Garnier, F. Hamel and L. Roques, The spatio-temporal dynamics of neutral genetic diversity,, Preprint., ().  doi: 10.1016/j.ecocom.2014.05.003.  Google Scholar

[9]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), iv+190. doi: 10.1090/memo/0285.  Google Scholar

[10]

M. Cain, B. Milligan and A. Strand, Long distance seed dispersal in plant populations, Am. J. Bot., 87 (2000), 1217-1227. doi: 10.2307/2656714.  Google Scholar

[11]

A. Carr and J. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132, (2004), 2433-2439. doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[12]

J. S. Clark, Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord, Am. Nat., 152 (1998), 204-224. doi: 10.1086/286162.  Google Scholar

[13]

J. S. Clark, C. Fastie, G. Hurtt, S. T. Jackson, C. Johnson, G. A. King, M. Lewis, J. Lynch, S. Pacala, C. Prentice, E. W. Schupp, T. Webb III and P. Wyckoff, Reid's paradox of rapid plant migration, BioScience, 48 (1998), 13-24. doi: 10.2307/1313224.  Google Scholar

[14]

J. Coville and L. Dupaigne, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1-29. doi: 10.1017/S0308210504000721.  Google Scholar

[15]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Diff. Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[16]

E. C. M. Crooks, Travelling fronts for monostable reaction-diffusion systems with gradient-dependence, Adv. Diff. Equations, 8 (2003), 279-314.  Google Scholar

[17]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Diff. Equations, 33 (1979), 58-73. doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[18]

J. P. Eckmann and C. E. Wayne, The nonlinear stability of front solutions for parabolic differential equations, Comm. Math. Phys., 161 (1994), 323-334. doi: 10.1007/BF02099781.  Google Scholar

[19]

J. Fayard, E. K. Klein and F. Lefèvre, Long distance dispersal and the fate of a gene from the colonization front, J. Evol. Biol., 22 (2009), 2171-2182. doi: 10.1111/j.1420-9101.2009.01832.x.  Google Scholar

[20]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, 1979.  Google Scholar

[21]

P. C. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.  Google Scholar

[22]

J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43 (2011), 1955-1974. doi: 10.1137/10080693X.  Google Scholar

[23]

J. Garnier, T. Giletti, F. Hamel and L. Roques, Inside dynamics of pulled and pushed fronts, J. Math. Pures Appl., 11 (2012), 173-188. doi: 10.3934/cpaa.2012.11.173.  Google Scholar

[24]

O. Hallatschek and D. R. Nelson, Gene surfing in expanding populations, Theor. Popul. Biol., 73 (2008), 158-170. doi: 10.1016/j.tpb.2007.08.008.  Google Scholar

[25]

Ja. I. Kanel, Certain problem of burning-theory equations, Dokl. Akad. Nauk SSSR, 136 (1961), 277-280.  Google Scholar

[26]

E. K. Klein, C. Lavigne and P. H. Gouyon, Mixing of propagules from discrete sources at long distance : Comparing a dispersal tail to an exponential, BMC Ecology, 6 (2006). Google Scholar

[27]

N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. Univ. Moscou, Sér A, 1 (1937) 1-26. Google Scholar

[28]

M. Kot, M. Lewis and P. Van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042. doi: 10.2307/2265698.  Google Scholar

[29]

J. G. Lambrinos, How interactions between ecology and evolution influence contemporary invasion dynamics, Ecol., 85 (2004), 2061-2070. doi: 10.1890/03-8013.  Google Scholar

[30]

K. S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov, J. Diff. Equations, 59 (1985), 44-70. doi: 10.1016/0022-0396(85)90137-8.  Google Scholar

[31]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222. doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[32]

D. Mollison, Spatial contact models for ecological and epidemic spread, J. R. Stat. Ser. B Stat. Methodol., 39 (1977),283-326.  Google Scholar

[33]

R. Nathan and H. Muller-Landau, Spatial patterns of seed dispersal, their determinants and consequences for recruitment, Trends Ecol. Evol., 15 (2000), 278-285. doi: 10.1016/S0169-5347(00)01874-7.  Google Scholar

[34]

J. M. Pringle, F. Lutscher and E. Glick, Going against the flow: effects of non-Gaussian dispersal kernels and reproduction over multiple generations, Mar. Ecol. Prog. Ser., 377 (2009), 13-17. doi: 10.3354/meps07836.  Google Scholar

[35]

C. Reid, The Origin of the British Flora, Dulau & Co, 1899. doi: 10.5962/bhl.title.7595.  Google Scholar

[36]

L. Roques, F. Hamel, J. Fayard, B. Fady and E. K. Klein, Recolonisation by diffusion can generate increasing rates of spread, Theor. Popul. Biol., 77 (2010), 205-212. doi: 10.1016/j.tpb.2010.02.002.  Google Scholar

[37]

L. Roques, J. Garnier, F. Hamel and E. Klein, Allee effect promotes diversity in traveling waves of colonization, Proc. Natl. Acad. Sci. USA, 109 (2012), 8828-8833. doi: 10.1073/pnas.1201695109.  Google Scholar

[38]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213-234. doi: 10.1017/S0308210500010258.  Google Scholar

[39]

F. Rothe, Convergence to pushed fronts, Rocky Mountain J. Math., 11 (1981), 617-634. doi: 10.1216/RMJ-1981-11-4-617.  Google Scholar

[40]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355. doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[41]

D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Diff. Equations, 25 (1977), 130-144. doi: 10.1016/0022-0396(77)90185-1.  Google Scholar

[42]

K. Schumacher, Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math., 316 (1980), 54-70. doi: 10.1515/crll.1980.316.54.  Google Scholar

[43]

J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[44]

A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci., 31 (1976), 307-315. doi: 10.1016/0025-5564(76)90087-0.  Google Scholar

[45]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187. doi: 10.1007/BF00279720.  Google Scholar

[46]

P. Turchin, Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants, Sinauer Associates, 1998. Google Scholar

[47]

K. Uchiyama, The behaviour of solutions of some non-linear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.  Google Scholar

[48]

M. O. Vlad, L. L. Cavalli-Sforza and J. Ross, Enhanced (hydrodynamic) transport induced by population growth in reaction-diffusion systems with application to population genetics, Proc. Natl. Acad. Sci. USA, 101 (2004), 10249-10253. doi: 10.1073/pnas.0403419101.  Google Scholar

[49]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028.  Google Scholar

[50]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol., 45 (2002), 511-548. doi: 10.1007/s00285-002-0169-3.  Google Scholar

[1]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[2]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[3]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[4]

Karel Hasík, Jana Kopfová, Petra Nábělková, Sergei Trofimchuk. On pushed wavefronts of monostable equation with unimodal delayed reaction. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5979-6000. doi: 10.3934/dcds.2021103

[5]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[6]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

[7]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. Pushed traveling fronts in monostable equations with monotone delayed reaction. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2169-2187. doi: 10.3934/dcds.2013.33.2169

[8]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[9]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[10]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[11]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[12]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[13]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[14]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[15]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[16]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[17]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[18]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[19]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[20]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (7)

[Back to Top]