December  2014, 19(10): 3133-3145. doi: 10.3934/dcdsb.2014.19.3133

A periodic Ross-Macdonald model in a patchy environment

1. 

Francis I. Proctor Foundation for Research in Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

3. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124

Received  July 2013 Revised  January 2014 Published  October 2014

Based on the classical Ross-Macdonald model, in this paper we propose a periodic malaria model to incorporate the effects of temporal and spatial heterogeneity on disease transmission. The temporal heterogeneity is described by assuming that some model coefficients are time-periodic, while the spatial heterogeneity is modeled by using a multi-patch structure and assuming that individuals travel among patches. We calculate the basic reproduction number $\mathcal{R}_0$ and show that either the disease-free periodic solution is globally asymptotically stable if $\mathcal{R}_0\le 1$ or the positive periodic solution is globally asymptotically stable if $\mathcal{R}_0>1$. Numerical simulations are conducted to confirm the analytical results and explore the effect of travel control on the disease prevalence.
Citation: Daozhou Gao, Yijun Lou, Shigui Ruan. A periodic Ross-Macdonald model in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3133-3145. doi: 10.3934/dcdsb.2014.19.3133
References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases,, Ecol. Lett., 9 (2006), 467. doi: 10.1111/j.1461-0248.2005.00879.x. Google Scholar

[2]

G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis,, Math. Biosci., 38 (1973), 113. doi: 10.1016/0025-5564(78)90021-4. Google Scholar

[3]

P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross-Macdonald model in a patchy environment,, Math. Biosci., 216 (2008), 123. doi: 10.1016/j.mbs.2008.08.010. Google Scholar

[4]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421. doi: 10.1007/s00285-006-0015-0. Google Scholar

[5]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9. Google Scholar

[6]

Z. Bai and Y. Zhou, Threshold dynamics of a Bacillary Dysentery model with seasonal fluctuation,, Discrete Contin. Dyn. Syst., 15 (2011), 1. doi: 10.3934/dcdsb.2011.15.1. Google Scholar

[7]

C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases,, J. Theoret. Biol., 258 (2009), 550. doi: 10.1016/j.jtbi.2009.02.016. Google Scholar

[8]

C. Costantini, S. G. Li, A. D. Torre, N. Sagnon, M. Coluzzi and C. E. Taylor, Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village,, Med. Vet. Entomol., 10 (1996), 203. doi: 10.1111/j.1365-2915.1996.tb00733.x. Google Scholar

[9]

M. H. Craig, I. Kleinschmidt, J. B. Nawn, D. Le Sueur and B. L. Sharp, Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: Part I. The impact of climatic factors,, Trop. Med. Int. Health, 9 (2004), 1247. doi: 10.1111/j.1365-3156.2004.01340.x. Google Scholar

[10]

B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates,, J. Biol. Dynam., 3 (2009), 430. doi: 10.1080/17513750802495816. Google Scholar

[11]

D. Gao and S. Ruan, A multi-patch malaria model with logistic growth populations,, SIAM J. Appl. Math., 72 (2012), 819. doi: 10.1137/110850761. Google Scholar

[12]

H. Gao, L. Wang, S. Liang, Y. Liu, S. Tong, J. Wang, Y. Li, X. Wang, H. Yang, J. Ma, L. Fang and W. Cao, Change in rainfall drives malaria re-emergence in Anhui province, China,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0043686. Google Scholar

[13]

N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology,, Proc. R. Soc. B., 273 (2006), 2541. doi: 10.1098/rspb.2006.3604. Google Scholar

[14]

J. K. Hale, Ordinary Differential Equations,, Wiley-Interscience, (1980). Google Scholar

[15]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dyn. Differ. Equ., 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[16]

K. D. Lafferty, The ecology of climate change and infectious diseases,, Ecology, 90 (2009), 888. doi: 10.1890/08-0079.1. Google Scholar

[17]

L. Liu, X.-Q. Zhao and Y. Zhou, A tuberculosis model with seasonality,, Bull. Math. Biol., 72 (2010), 931. doi: 10.1007/s11538-009-9477-8. Google Scholar

[18]

X. Liu and X.-Q. Zhao, A periodic epidemic model with age structure in a patchy environment,, SIAM J. Appl. Math., 71 (2011), 1896. doi: 10.1137/100813610. Google Scholar

[19]

J. Lou, Y. Lou and J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects,, J. Math. Biol., 65 (2012), 623. doi: 10.1007/s00285-011-0474-9. Google Scholar

[20]

Y. Lou and X.-Q. Zhao, The periodic Ross-Macdonald model with diffusion and advection,, Appl. Anal., 89 (2010), 1067. doi: 10.1080/00036810903437804. Google Scholar

[21]

Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023. doi: 10.1137/080744438. Google Scholar

[22]

Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish,, Bull. Math. Biol., 73 (2011), 2384. doi: 10.1007/s11538-011-9628-6. Google Scholar

[23]

G. Macdonald, The analysis of sporozoite rate,, Trop. Dis. Bull., 49 (1952), 569. Google Scholar

[24]

G. Macdonald, Epidemiological basis of malaria control,, Bull. World Health Organ., 15 (1956), 613. Google Scholar

[25]

G. Macdonald, The Epidemiology and Control of Malaria,, Oxford University Press, (1957). Google Scholar

[26]

J. T. Midega, C. M. Mbogo, H. Mwambi, M. D. Wilson, G. Ojwang, J. M. Mwangangi, J. G. Nzovu, J. I. Githure, G. Yan and J. C. Beier, Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods,, J. Med. Entomol., 44 (2007), 923. doi: {10.1603/0022-2585(2007)44[923:EDASOA]2.0.CO;2}. Google Scholar

[27]

R. S. Ostfeld, Climate change and the distribution and intensity of infectious diseases,, Ecology, 90 (2009), 903. doi: 10.1890/08-0659.1. Google Scholar

[28]

P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission,, Environ. Health Perspect., 118 (2010), 620. doi: 10.1289/ehp.0901256. Google Scholar

[29]

D. Rain, Eaters of the Dry Season: Circular Labor Migration in the West African Sahel,, Westview Press, (1999). Google Scholar

[30]

A. Roca-Feltrer, J. R. Armstrong Schellenberg, L. Smith and I. Carneiro, A simple method for defining malaria seasonality,, Malaria J., 8 (2009). doi: 10.1186/1475-2875-8-276. Google Scholar

[31]

R. Ross, The Prevention of Malaria,, 2nd edn., (1911). Google Scholar

[32]

S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bull. Math. Biol., 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z. Google Scholar

[33]

D. L. Smith, J. Dushoff and F. E. McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment,, PLoS Biology, 2 (2004), 1957. Google Scholar

[34]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). Google Scholar

[35]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[36]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Differ. Equ., 20 (2008), 699. doi: 10.1007/s10884-008-9111-8. Google Scholar

[37]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat,, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 343. doi: 10.3934/dcds.2011.29.343. Google Scholar

[38]

J. Zhang, Z. Jin, G. Sun, X. Sun and S. Ruan, Modeling seasonal Rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226. doi: 10.1007/s11538-012-9720-6. Google Scholar

[39]

T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology,, Bull. Math. Biol., 69 (2007), 2537. doi: 10.1007/s11538-007-9231-z. Google Scholar

[40]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

show all references

References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases,, Ecol. Lett., 9 (2006), 467. doi: 10.1111/j.1461-0248.2005.00879.x. Google Scholar

[2]

G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis,, Math. Biosci., 38 (1973), 113. doi: 10.1016/0025-5564(78)90021-4. Google Scholar

[3]

P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross-Macdonald model in a patchy environment,, Math. Biosci., 216 (2008), 123. doi: 10.1016/j.mbs.2008.08.010. Google Scholar

[4]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421. doi: 10.1007/s00285-006-0015-0. Google Scholar

[5]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9. Google Scholar

[6]

Z. Bai and Y. Zhou, Threshold dynamics of a Bacillary Dysentery model with seasonal fluctuation,, Discrete Contin. Dyn. Syst., 15 (2011), 1. doi: 10.3934/dcdsb.2011.15.1. Google Scholar

[7]

C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases,, J. Theoret. Biol., 258 (2009), 550. doi: 10.1016/j.jtbi.2009.02.016. Google Scholar

[8]

C. Costantini, S. G. Li, A. D. Torre, N. Sagnon, M. Coluzzi and C. E. Taylor, Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village,, Med. Vet. Entomol., 10 (1996), 203. doi: 10.1111/j.1365-2915.1996.tb00733.x. Google Scholar

[9]

M. H. Craig, I. Kleinschmidt, J. B. Nawn, D. Le Sueur and B. L. Sharp, Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: Part I. The impact of climatic factors,, Trop. Med. Int. Health, 9 (2004), 1247. doi: 10.1111/j.1365-3156.2004.01340.x. Google Scholar

[10]

B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates,, J. Biol. Dynam., 3 (2009), 430. doi: 10.1080/17513750802495816. Google Scholar

[11]

D. Gao and S. Ruan, A multi-patch malaria model with logistic growth populations,, SIAM J. Appl. Math., 72 (2012), 819. doi: 10.1137/110850761. Google Scholar

[12]

H. Gao, L. Wang, S. Liang, Y. Liu, S. Tong, J. Wang, Y. Li, X. Wang, H. Yang, J. Ma, L. Fang and W. Cao, Change in rainfall drives malaria re-emergence in Anhui province, China,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0043686. Google Scholar

[13]

N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology,, Proc. R. Soc. B., 273 (2006), 2541. doi: 10.1098/rspb.2006.3604. Google Scholar

[14]

J. K. Hale, Ordinary Differential Equations,, Wiley-Interscience, (1980). Google Scholar

[15]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dyn. Differ. Equ., 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[16]

K. D. Lafferty, The ecology of climate change and infectious diseases,, Ecology, 90 (2009), 888. doi: 10.1890/08-0079.1. Google Scholar

[17]

L. Liu, X.-Q. Zhao and Y. Zhou, A tuberculosis model with seasonality,, Bull. Math. Biol., 72 (2010), 931. doi: 10.1007/s11538-009-9477-8. Google Scholar

[18]

X. Liu and X.-Q. Zhao, A periodic epidemic model with age structure in a patchy environment,, SIAM J. Appl. Math., 71 (2011), 1896. doi: 10.1137/100813610. Google Scholar

[19]

J. Lou, Y. Lou and J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects,, J. Math. Biol., 65 (2012), 623. doi: 10.1007/s00285-011-0474-9. Google Scholar

[20]

Y. Lou and X.-Q. Zhao, The periodic Ross-Macdonald model with diffusion and advection,, Appl. Anal., 89 (2010), 1067. doi: 10.1080/00036810903437804. Google Scholar

[21]

Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023. doi: 10.1137/080744438. Google Scholar

[22]

Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish,, Bull. Math. Biol., 73 (2011), 2384. doi: 10.1007/s11538-011-9628-6. Google Scholar

[23]

G. Macdonald, The analysis of sporozoite rate,, Trop. Dis. Bull., 49 (1952), 569. Google Scholar

[24]

G. Macdonald, Epidemiological basis of malaria control,, Bull. World Health Organ., 15 (1956), 613. Google Scholar

[25]

G. Macdonald, The Epidemiology and Control of Malaria,, Oxford University Press, (1957). Google Scholar

[26]

J. T. Midega, C. M. Mbogo, H. Mwambi, M. D. Wilson, G. Ojwang, J. M. Mwangangi, J. G. Nzovu, J. I. Githure, G. Yan and J. C. Beier, Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods,, J. Med. Entomol., 44 (2007), 923. doi: {10.1603/0022-2585(2007)44[923:EDASOA]2.0.CO;2}. Google Scholar

[27]

R. S. Ostfeld, Climate change and the distribution and intensity of infectious diseases,, Ecology, 90 (2009), 903. doi: 10.1890/08-0659.1. Google Scholar

[28]

P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission,, Environ. Health Perspect., 118 (2010), 620. doi: 10.1289/ehp.0901256. Google Scholar

[29]

D. Rain, Eaters of the Dry Season: Circular Labor Migration in the West African Sahel,, Westview Press, (1999). Google Scholar

[30]

A. Roca-Feltrer, J. R. Armstrong Schellenberg, L. Smith and I. Carneiro, A simple method for defining malaria seasonality,, Malaria J., 8 (2009). doi: 10.1186/1475-2875-8-276. Google Scholar

[31]

R. Ross, The Prevention of Malaria,, 2nd edn., (1911). Google Scholar

[32]

S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bull. Math. Biol., 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z. Google Scholar

[33]

D. L. Smith, J. Dushoff and F. E. McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment,, PLoS Biology, 2 (2004), 1957. Google Scholar

[34]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). Google Scholar

[35]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[36]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Differ. Equ., 20 (2008), 699. doi: 10.1007/s10884-008-9111-8. Google Scholar

[37]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat,, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 343. doi: 10.3934/dcds.2011.29.343. Google Scholar

[38]

J. Zhang, Z. Jin, G. Sun, X. Sun and S. Ruan, Modeling seasonal Rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226. doi: 10.1007/s11538-012-9720-6. Google Scholar

[39]

T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology,, Bull. Math. Biol., 69 (2007), 2537. doi: 10.1007/s11538-007-9231-z. Google Scholar

[40]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

[1]

Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111

[2]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[3]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[4]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[5]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[6]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[7]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[8]

Bruno Buonomo, Giuseppe Carbone, Alberto d'Onofrio. Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences & Engineering, 2018, 15 (1) : 299-321. doi: 10.3934/mbe.2018013

[9]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[10]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[11]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[12]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[13]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[14]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[15]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[16]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[17]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[18]

Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

[19]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[20]

Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]