December  2014, 19(10): 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage

1. 

Department of Mathematics and The National Center for Theoretical Science, National Tsing-Hua University, Hsinchu 30013

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795

3. 

Department of Natural Science in the Center for General Education, Chang Gung University, Kwei-Shan, Taoyuan 333

Received  June 2013 Revised  August 2013 Published  October 2014

The dynamics of a reaction-diffusion system for two species of microorganism in an unstirred chemostat with internal storage is studied. It is shown that the diffusion coefficient is a key parameter of determining the asymptotic dynamics, and there exists a threshold diffusion coefficient above which both species become extinct. On the other hand, for diffusion coefficient below the threshold, either one species or both species persist, and in the asymptotic limit, a steady state showing competition exclusion or coexistence is reached.
Citation: Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169
References:
[1]

R. A. Armstrong and R. McGehee, Competitive exclusion,, American Naturalist, 115 (1980), 151.  doi: 10.1086/283553.  Google Scholar

[2]

A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous culture,, Mathematics in Microbiology, (1983), 77.   Google Scholar

[3]

M. R. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri,, J. Mar. Biol. Assoc. UK, 48 (1968), 689.   Google Scholar

[4]

M. R. Droop, Some thoughts on nutrient limitation in algae,, Journal of Phycology, 9 (1973), 264.   Google Scholar

[5]

J. P. Grover, Dynamics of competition among microalgae in variable environments: experimental tests of alternative models,, Oikos, 62 (1991), 231.   Google Scholar

[6]

J. P. Grover, Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model,, American Naturalist, 138 (1991), 811.   Google Scholar

[7]

J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability,, American Naturalist, 178 (2011), 124.   Google Scholar

[8]

J. P. Grover, S.-B. Hsu and F.-B. Wang, Competition between microorganisms for a single limiting resource with cell quota structure and spatial variation,, J. Math. Biol., 64 (2012), 713.  doi: 10.1007/s00285-011-0426-4.  Google Scholar

[9]

S.-B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760.  doi: 10.1137/0134064.  Google Scholar

[10]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage,, SIAM J. Appl. Math., 68 (2008), 1600.  doi: 10.1137/070700784.  Google Scholar

[11]

S.-B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms,, SIAM J. Appl. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[12]

S.-B. Hsu, J.-F. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat,, J. Differential Equations, 248 (2010), 2470.  doi: 10.1016/j.jde.2009.12.014.  Google Scholar

[13]

S.-B. Hsu, J.-F. Jiang and F.-B. Wang, Reaction-diffusion equations of two species competing for two complementary resources with internal storage,, J. Differential Equations, 251 (2011), 918.  doi: 10.1016/j.jde.2011.05.003.  Google Scholar

[14]

S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces,, Trans. Amer. Math. Soc., 348 (1996), 4083.  doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[15]

S.-B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[16]

S.-B. Hsu and F.-B. Wang, On a mathematical model arising from competition of phytoplankton species for a single nutrient with internal storage: steady state analysis,, Commun. Pure Appl. Anal., 10 (2011), 1479.  doi: 10.3934/cpaa.2011.10.1479.  Google Scholar

[17]

C. A. Klausmeier, E. Litchman, T. Daufresne and S. A. Levin, Phytoplankton stoichiometry,, Ecological Research, 23 (2008), 479.   Google Scholar

[18]

B. S. Leadbeater, The 'Droop Equation'-Michael Droop and the legacy of the 'Cell-Quota Model' of phytoplankton growth,, Protist, 157 (2006), 345.   Google Scholar

[19]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[20]

H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat,, J. Math. Biol., 35 (1997), 545.  doi: 10.1007/s002850050065.  Google Scholar

[21]

H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: the variable-yield model,, SIAM J. Appl. Math., 54 (1994), 1113.  doi: 10.1137/S0036139993245344.  Google Scholar

[22]

M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat,, Bull. Math. Biol., 71 (2009), 145.  doi: 10.1007/s11538-008-9357-7.  Google Scholar

show all references

References:
[1]

R. A. Armstrong and R. McGehee, Competitive exclusion,, American Naturalist, 115 (1980), 151.  doi: 10.1086/283553.  Google Scholar

[2]

A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous culture,, Mathematics in Microbiology, (1983), 77.   Google Scholar

[3]

M. R. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri,, J. Mar. Biol. Assoc. UK, 48 (1968), 689.   Google Scholar

[4]

M. R. Droop, Some thoughts on nutrient limitation in algae,, Journal of Phycology, 9 (1973), 264.   Google Scholar

[5]

J. P. Grover, Dynamics of competition among microalgae in variable environments: experimental tests of alternative models,, Oikos, 62 (1991), 231.   Google Scholar

[6]

J. P. Grover, Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model,, American Naturalist, 138 (1991), 811.   Google Scholar

[7]

J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability,, American Naturalist, 178 (2011), 124.   Google Scholar

[8]

J. P. Grover, S.-B. Hsu and F.-B. Wang, Competition between microorganisms for a single limiting resource with cell quota structure and spatial variation,, J. Math. Biol., 64 (2012), 713.  doi: 10.1007/s00285-011-0426-4.  Google Scholar

[9]

S.-B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760.  doi: 10.1137/0134064.  Google Scholar

[10]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage,, SIAM J. Appl. Math., 68 (2008), 1600.  doi: 10.1137/070700784.  Google Scholar

[11]

S.-B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms,, SIAM J. Appl. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[12]

S.-B. Hsu, J.-F. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat,, J. Differential Equations, 248 (2010), 2470.  doi: 10.1016/j.jde.2009.12.014.  Google Scholar

[13]

S.-B. Hsu, J.-F. Jiang and F.-B. Wang, Reaction-diffusion equations of two species competing for two complementary resources with internal storage,, J. Differential Equations, 251 (2011), 918.  doi: 10.1016/j.jde.2011.05.003.  Google Scholar

[14]

S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces,, Trans. Amer. Math. Soc., 348 (1996), 4083.  doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[15]

S.-B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[16]

S.-B. Hsu and F.-B. Wang, On a mathematical model arising from competition of phytoplankton species for a single nutrient with internal storage: steady state analysis,, Commun. Pure Appl. Anal., 10 (2011), 1479.  doi: 10.3934/cpaa.2011.10.1479.  Google Scholar

[17]

C. A. Klausmeier, E. Litchman, T. Daufresne and S. A. Levin, Phytoplankton stoichiometry,, Ecological Research, 23 (2008), 479.   Google Scholar

[18]

B. S. Leadbeater, The 'Droop Equation'-Michael Droop and the legacy of the 'Cell-Quota Model' of phytoplankton growth,, Protist, 157 (2006), 345.   Google Scholar

[19]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[20]

H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat,, J. Math. Biol., 35 (1997), 545.  doi: 10.1007/s002850050065.  Google Scholar

[21]

H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: the variable-yield model,, SIAM J. Appl. Math., 54 (1994), 1113.  doi: 10.1137/S0036139993245344.  Google Scholar

[22]

M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat,, Bull. Math. Biol., 71 (2009), 145.  doi: 10.1007/s11538-008-9357-7.  Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[8]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[11]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[12]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]