December  2014, 19(10): 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems

1. 

Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States

Received  July 2013 Revised  October 2013 Published  October 2014

This paper studies Holder continuity of weak solutions to strongly coupled elliptic systems. We do not assume that the solutions are bounded but BMO and the ellipticity constants can be unbounded.
Citation: Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245
References:
[1]

B. Franchi, C. Perez and R. L. Wheeden, Self-Improving Properties of John Nirenberg and Poincaré Inequalities on Spaces of Homogeneous Type,, J. Functional Analysis, 153 (1998), 108.  doi: 10.1006/jfan.1997.3175.  Google Scholar

[2]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003).  doi: 10.1142/9789812795557.  Google Scholar

[3]

R. L. Johnson and C. J. Neugebauer, Properties of BMO functions whose reciprocals are also BMO,, Z. Anal. Anwendungen, 12 (1993), 3.   Google Scholar

[4]

D. Le, Regularity of BMO weak solutions to nonlinear parabolic systems via homotopy,, Transactions of AMS, 365 (2013), 2723.  doi: 10.1090/S0002-9947-2012-05720-5.  Google Scholar

[5]

D. Le, Everywhere regularity of BMO weak solutions to uniform elliptic systems,, submitted., ().   Google Scholar

[6]

D. Le, L. Nguyen and T. Nguyen, Coexistence in Cross Diffusion systems,, Indiana Univ. J. Math., 56 (2007), 1749.   Google Scholar

[7]

J. Orobitg and C. Pérez, $A_p$ weights for nondoubling measures in $\RR^n$ and applications,, Transactions of AMS, 354 (2002), 2013.  doi: 10.1090/S0002-9947-02-02922-7.  Google Scholar

[8]

E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality and Oscillatory Integrals,, Princeton Univ. Press, (1993).   Google Scholar

show all references

References:
[1]

B. Franchi, C. Perez and R. L. Wheeden, Self-Improving Properties of John Nirenberg and Poincaré Inequalities on Spaces of Homogeneous Type,, J. Functional Analysis, 153 (1998), 108.  doi: 10.1006/jfan.1997.3175.  Google Scholar

[2]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003).  doi: 10.1142/9789812795557.  Google Scholar

[3]

R. L. Johnson and C. J. Neugebauer, Properties of BMO functions whose reciprocals are also BMO,, Z. Anal. Anwendungen, 12 (1993), 3.   Google Scholar

[4]

D. Le, Regularity of BMO weak solutions to nonlinear parabolic systems via homotopy,, Transactions of AMS, 365 (2013), 2723.  doi: 10.1090/S0002-9947-2012-05720-5.  Google Scholar

[5]

D. Le, Everywhere regularity of BMO weak solutions to uniform elliptic systems,, submitted., ().   Google Scholar

[6]

D. Le, L. Nguyen and T. Nguyen, Coexistence in Cross Diffusion systems,, Indiana Univ. J. Math., 56 (2007), 1749.   Google Scholar

[7]

J. Orobitg and C. Pérez, $A_p$ weights for nondoubling measures in $\RR^n$ and applications,, Transactions of AMS, 354 (2002), 2013.  doi: 10.1090/S0002-9947-02-02922-7.  Google Scholar

[8]

E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality and Oscillatory Integrals,, Princeton Univ. Press, (1993).   Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]