Citation: |
[1] |
B. Franchi, C. Perez and R. L. Wheeden, Self-Improving Properties of John Nirenberg and Poincaré Inequalities on Spaces of Homogeneous Type, J. Functional Analysis, 153 (1998), 108-146.doi: 10.1006/jfan.1997.3175. |
[2] |
E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003.doi: 10.1142/9789812795557. |
[3] |
R. L. Johnson and C. J. Neugebauer, Properties of BMO functions whose reciprocals are also BMO, Z. Anal. Anwendungen, 12 (1993), 3-11. |
[4] |
D. Le, Regularity of BMO weak solutions to nonlinear parabolic systems via homotopy, Transactions of AMS, 365 (2013), 2723-2753.doi: 10.1090/S0002-9947-2012-05720-5. |
[5] |
D. Le, Everywhere regularity of BMO weak solutions to uniform elliptic systems, submitted. |
[6] |
D. Le, L. Nguyen and T. Nguyen, Coexistence in Cross Diffusion systems, Indiana Univ. J. Math., 56 (2007), 1749-1791. |
[7] |
J. Orobitg and C. Pérez, $A_p$ weights for nondoubling measures in $\RR^n$ and applications, Transactions of AMS, 354 (2002), 2013-2033.doi: 10.1090/S0002-9947-02-02922-7. |
[8] |
E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993. |