December  2014, 19(10): 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream

1. 

Department of Mathematics, University of Louisville, Louisville, KY 40292, United States, United States

2. 

Department of Biology, The University of Maryland, College Park, MD 20742

Received  July 2013 Revised  February 2014 Published  October 2014

We propose a reaction-advection-diffusion model to study competition between two species in a stream. We divide each species into two compartments, individuals inhabiting the benthos and individuals drifting in the stream. We assume that the growth of and competitive interactions between the populations take place on the benthos and that dispersal occurs in the stream. Our system consists of two linear reaction-advection-diffusion equations and two ordinary differential equations. Here, we provide a thorough study for the corresponding single species model, which has been previously proposed. We next give formulas for the rightward spreading and leftward spreading speed for the model. We show that rightward spreading speed can be characterized as is the slowest speed of a class of traveling wave speeds. We provide sharp conditions for the spreading speeds to be positive. For the two species competition model, we investigate how a species spreads into its competitor's environment. Formulas for the spreading speeds are provided under linear determinacy conditions. We demonstrate that under certain conditions, the invading species can spread upstream. Lastly, we study the existence of traveling wave solutions for the two species competition model.
Citation: Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267
References:
[1]

B. R. Anholt, Density dependence resolves the stream drift paradox,, Ecology, 76 (1995), 2235.  doi: 10.2307/1941697.  Google Scholar

[2]

S. Flöder and C. Kilroy, Didymosphenia geminata (Protista, Bacillariophyceae) invasion, resistance of native periphyton communities, and implications for dispersal and management,, Biodiversity and Conservation, 18 (2009), 3809.   Google Scholar

[3]

A. E. Hershey, J. Pastor, B. J. Peterson and G. W. Kling, Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river,, Ecology, 74 (1993), 2315.  doi: 10.2307/1939584.  Google Scholar

[4]

S. Humphries and G. D. Ruxton, Is there really a drift paradox?,, J. Anim. Ecol., 71 (2002), 151.  doi: 10.1046/j.0021-8790.2001.00579.x.  Google Scholar

[5]

A. C. Krist and C. C. Charles, The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers,, Hydrobiologia, 694 (2012), 143.  doi: 10.1007/s10750-012-1138-5.  Google Scholar

[6]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Mathematical biosciences, 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[7]

B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, Journal of Differential Equations, 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[9]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[10]

R. Lui, Biological growth and spread modeled by systems of recursions,, I Mathematical theory. Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[11]

F. Lutscher, E. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow,, Theoretical Population Biology, 71 (2007), 267.  doi: 10.1016/j.tpb.2006.11.006.  Google Scholar

[12]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Appl. Math., 65 (2005), 1305.  doi: 10.1137/S0036139904440400.  Google Scholar

[13]

K. Müller, Investigations on the organic drift in North Swedish streams,, Report of the Institute of Freshwater Research, 34 (1954), 133.   Google Scholar

[14]

K. Müller, The colonization cycle of freshwater insects,, Oecologia, 53 (1982), 202.   Google Scholar

[15]

A. Okubo, P. K. Maini, M. H. Williamson and J. D. Murray, The spatial spread of the grey squirrel in Britain,, Proceedings of the Royal Society of London Series B, 238 (1989), 113.  doi: 10.1098/rspb.1989.0070.  Google Scholar

[16]

E. Pachepsky, F. Lutscher, R. M. Nisbet and M. A. Lewis, Persistence, spread and the drift paradox,, Theoretical Population Biology, 67 (2005), 61.  doi: 10.1016/j.tpb.2004.09.001.  Google Scholar

[17]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries,, Ecology, 82 (2001), 1219.  doi: 10.2307/2679984.  Google Scholar

[18]

O. Vasilyeva and F. Lutscher, How flow speed alters competitive outcome in advective environments,, Bull. Math. Biol., 74 (2012), 2935.  doi: 10.1007/s11538-012-9792-3.  Google Scholar

[19]

O. Vasilyeva and F. Lutscher, Competition of three species in an advective environment,, Nonlinear Anal. Real World Appl., 13 (2012), 1730.  doi: 10.1016/j.nonrwa.2011.12.004.  Google Scholar

[20]

C. Wang, A Stage-Structured Delayed Reaction-Diffusion Model for Competition Between Two Species,, Ph.D Thesis. University of Louisville, (2013).   Google Scholar

[21]

Q. Wang and X. -Q. Zhao, Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment,, Dyn. Cont. Discrete Impulsive Syst. (Ser. A), 13 (2006), 231.   Google Scholar

[22]

R. F. Waters, The drift of stream insects,, Annu. Rev. Entomol., 17 (1972), 253.  doi: 10.1146/annurev.en.17.010172.001345.  Google Scholar

[23]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

show all references

References:
[1]

B. R. Anholt, Density dependence resolves the stream drift paradox,, Ecology, 76 (1995), 2235.  doi: 10.2307/1941697.  Google Scholar

[2]

S. Flöder and C. Kilroy, Didymosphenia geminata (Protista, Bacillariophyceae) invasion, resistance of native periphyton communities, and implications for dispersal and management,, Biodiversity and Conservation, 18 (2009), 3809.   Google Scholar

[3]

A. E. Hershey, J. Pastor, B. J. Peterson and G. W. Kling, Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river,, Ecology, 74 (1993), 2315.  doi: 10.2307/1939584.  Google Scholar

[4]

S. Humphries and G. D. Ruxton, Is there really a drift paradox?,, J. Anim. Ecol., 71 (2002), 151.  doi: 10.1046/j.0021-8790.2001.00579.x.  Google Scholar

[5]

A. C. Krist and C. C. Charles, The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers,, Hydrobiologia, 694 (2012), 143.  doi: 10.1007/s10750-012-1138-5.  Google Scholar

[6]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Mathematical biosciences, 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[7]

B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, Journal of Differential Equations, 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[9]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[10]

R. Lui, Biological growth and spread modeled by systems of recursions,, I Mathematical theory. Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[11]

F. Lutscher, E. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow,, Theoretical Population Biology, 71 (2007), 267.  doi: 10.1016/j.tpb.2006.11.006.  Google Scholar

[12]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Appl. Math., 65 (2005), 1305.  doi: 10.1137/S0036139904440400.  Google Scholar

[13]

K. Müller, Investigations on the organic drift in North Swedish streams,, Report of the Institute of Freshwater Research, 34 (1954), 133.   Google Scholar

[14]

K. Müller, The colonization cycle of freshwater insects,, Oecologia, 53 (1982), 202.   Google Scholar

[15]

A. Okubo, P. K. Maini, M. H. Williamson and J. D. Murray, The spatial spread of the grey squirrel in Britain,, Proceedings of the Royal Society of London Series B, 238 (1989), 113.  doi: 10.1098/rspb.1989.0070.  Google Scholar

[16]

E. Pachepsky, F. Lutscher, R. M. Nisbet and M. A. Lewis, Persistence, spread and the drift paradox,, Theoretical Population Biology, 67 (2005), 61.  doi: 10.1016/j.tpb.2004.09.001.  Google Scholar

[17]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries,, Ecology, 82 (2001), 1219.  doi: 10.2307/2679984.  Google Scholar

[18]

O. Vasilyeva and F. Lutscher, How flow speed alters competitive outcome in advective environments,, Bull. Math. Biol., 74 (2012), 2935.  doi: 10.1007/s11538-012-9792-3.  Google Scholar

[19]

O. Vasilyeva and F. Lutscher, Competition of three species in an advective environment,, Nonlinear Anal. Real World Appl., 13 (2012), 1730.  doi: 10.1016/j.nonrwa.2011.12.004.  Google Scholar

[20]

C. Wang, A Stage-Structured Delayed Reaction-Diffusion Model for Competition Between Two Species,, Ph.D Thesis. University of Louisville, (2013).   Google Scholar

[21]

Q. Wang and X. -Q. Zhao, Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment,, Dyn. Cont. Discrete Impulsive Syst. (Ser. A), 13 (2006), 231.   Google Scholar

[22]

R. F. Waters, The drift of stream insects,, Annu. Rev. Entomol., 17 (1972), 253.  doi: 10.1146/annurev.en.17.010172.001345.  Google Scholar

[23]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (1)

[Back to Top]