
Previous Article
A model for the biocontrol of mosquitoes using predatory fish
 DCDSB Home
 This Issue

Next Article
On the regular set of BMO weak solutions to $p$Laplacian strongly coupled nonregular elliptic systems
Spreading speeds and traveling wave solutions in a competitive reactiondiffusion model for species persistence in a stream
1.  Department of Mathematics, University of Louisville, Louisville, KY 40292, United States, United States 
2.  Department of Biology, The University of Maryland, College Park, MD 20742 
References:
[1] 
B. R. Anholt, Density dependence resolves the stream drift paradox, Ecology, 76 (1995), 22352239. doi: 10.2307/1941697. 
[2] 
S. Flöder and C. Kilroy, Didymosphenia geminata (Protista, Bacillariophyceae) invasion, resistance of native periphyton communities, and implications for dispersal and management, Biodiversity and Conservation, 18 (2009), 38093824. 
[3] 
A. E. Hershey, J. Pastor, B. J. Peterson and G. W. Kling, Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river, Ecology, 74 (1993), 23152325. doi: 10.2307/1939584. 
[4] 
S. Humphries and G. D. Ruxton, Is there really a drift paradox?, J. Anim. Ecol., 71 (2002), 151154. doi: 10.1046/j.00218790.2001.00579.x. 
[5] 
A. C. Krist and C. C. Charles, The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers, Hydrobiologia, 694 (2012), 143151. doi: 10.1007/s1075001211385. 
[6] 
B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Mathematical biosciences, 196 (2005), 8298. doi: 10.1016/j.mbs.2005.03.008. 
[7] 
B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323338. doi: 10.1007/s0028500801751. 
[8] 
B. Li, Traveling wave solutions in partially degenerate cooperative reactiondiffusion systems, Journal of Differential Equations, 252 (2012), 48424861. doi: 10.1016/j.jde.2012.01.018. 
[9] 
X. Liang and X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 140. Comm. Pure Appl. Math., 61 (2008), 137138. doi: 10.1002/cpa.20154. 
[10] 
R. Lui, Biological growth and spread modeled by systems of recursions, I Mathematical theory. Math. Biosci., 93 (1989), 269295. doi: 10.1016/00255564(89)900266. 
[11] 
F. Lutscher, E. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theoretical Population Biology, 71 (2007), 267277. doi: 10.1016/j.tpb.2006.11.006. 
[12] 
F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Appl. Math., 65 (2005), 13051327. doi: 10.1137/S0036139904440400. 
[13] 
K. Müller, Investigations on the organic drift in North Swedish streams, Report of the Institute of Freshwater Research, Drottningholm., 34 (1954), 133148. 
[14] 
K. Müller, The colonization cycle of freshwater insects, Oecologia, 53 (1982), 202207. 
[15] 
A. Okubo, P. K. Maini, M. H. Williamson and J. D. Murray, The spatial spread of the grey squirrel in Britain, Proceedings of the Royal Society of London Series B, 238 (1989), 113125. doi: 10.1098/rspb.1989.0070. 
[16] 
E. Pachepsky, F. Lutscher, R. M. Nisbet and M. A. Lewis, Persistence, spread and the drift paradox, Theoretical Population Biology, 67 (2005), 6173. doi: 10.1016/j.tpb.2004.09.001. 
[17] 
D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 12191237. doi: 10.2307/2679984. 
[18] 
O. Vasilyeva and F. Lutscher, How flow speed alters competitive outcome in advective environments, Bull. Math. Biol., 74 (2012), 29352958. doi: 10.1007/s1153801297923. 
[19] 
O. Vasilyeva and F. Lutscher, Competition of three species in an advective environment, Nonlinear Anal. Real World Appl., 13 (2012), 17301748. doi: 10.1016/j.nonrwa.2011.12.004. 
[20] 
C. Wang, A StageStructured Delayed ReactionDiffusion Model for Competition Between Two Species, Ph.D Thesis. University of Louisville, 2013. 
[21] 
Q. Wang and X. Q. Zhao, Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment, Dyn. Cont. Discrete Impulsive Syst. (Ser. A), 13 (2006), 231246. 
[22] 
R. F. Waters, The drift of stream insects, Annu. Rev. Entomol., 17 (1972), 253272. doi: 10.1146/annurev.en.17.010172.001345. 
[23] 
H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183218. doi: 10.1007/s002850200145. 
show all references
References:
[1] 
B. R. Anholt, Density dependence resolves the stream drift paradox, Ecology, 76 (1995), 22352239. doi: 10.2307/1941697. 
[2] 
S. Flöder and C. Kilroy, Didymosphenia geminata (Protista, Bacillariophyceae) invasion, resistance of native periphyton communities, and implications for dispersal and management, Biodiversity and Conservation, 18 (2009), 38093824. 
[3] 
A. E. Hershey, J. Pastor, B. J. Peterson and G. W. Kling, Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river, Ecology, 74 (1993), 23152325. doi: 10.2307/1939584. 
[4] 
S. Humphries and G. D. Ruxton, Is there really a drift paradox?, J. Anim. Ecol., 71 (2002), 151154. doi: 10.1046/j.00218790.2001.00579.x. 
[5] 
A. C. Krist and C. C. Charles, The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers, Hydrobiologia, 694 (2012), 143151. doi: 10.1007/s1075001211385. 
[6] 
B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Mathematical biosciences, 196 (2005), 8298. doi: 10.1016/j.mbs.2005.03.008. 
[7] 
B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323338. doi: 10.1007/s0028500801751. 
[8] 
B. Li, Traveling wave solutions in partially degenerate cooperative reactiondiffusion systems, Journal of Differential Equations, 252 (2012), 48424861. doi: 10.1016/j.jde.2012.01.018. 
[9] 
X. Liang and X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 140. Comm. Pure Appl. Math., 61 (2008), 137138. doi: 10.1002/cpa.20154. 
[10] 
R. Lui, Biological growth and spread modeled by systems of recursions, I Mathematical theory. Math. Biosci., 93 (1989), 269295. doi: 10.1016/00255564(89)900266. 
[11] 
F. Lutscher, E. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theoretical Population Biology, 71 (2007), 267277. doi: 10.1016/j.tpb.2006.11.006. 
[12] 
F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Appl. Math., 65 (2005), 13051327. doi: 10.1137/S0036139904440400. 
[13] 
K. Müller, Investigations on the organic drift in North Swedish streams, Report of the Institute of Freshwater Research, Drottningholm., 34 (1954), 133148. 
[14] 
K. Müller, The colonization cycle of freshwater insects, Oecologia, 53 (1982), 202207. 
[15] 
A. Okubo, P. K. Maini, M. H. Williamson and J. D. Murray, The spatial spread of the grey squirrel in Britain, Proceedings of the Royal Society of London Series B, 238 (1989), 113125. doi: 10.1098/rspb.1989.0070. 
[16] 
E. Pachepsky, F. Lutscher, R. M. Nisbet and M. A. Lewis, Persistence, spread and the drift paradox, Theoretical Population Biology, 67 (2005), 6173. doi: 10.1016/j.tpb.2004.09.001. 
[17] 
D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 12191237. doi: 10.2307/2679984. 
[18] 
O. Vasilyeva and F. Lutscher, How flow speed alters competitive outcome in advective environments, Bull. Math. Biol., 74 (2012), 29352958. doi: 10.1007/s1153801297923. 
[19] 
O. Vasilyeva and F. Lutscher, Competition of three species in an advective environment, Nonlinear Anal. Real World Appl., 13 (2012), 17301748. doi: 10.1016/j.nonrwa.2011.12.004. 
[20] 
C. Wang, A StageStructured Delayed ReactionDiffusion Model for Competition Between Two Species, Ph.D Thesis. University of Louisville, 2013. 
[21] 
Q. Wang and X. Q. Zhao, Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment, Dyn. Cont. Discrete Impulsive Syst. (Ser. A), 13 (2006), 231246. 
[22] 
R. F. Waters, The drift of stream insects, Annu. Rev. Entomol., 17 (1972), 253272. doi: 10.1146/annurev.en.17.010172.001345. 
[23] 
H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183218. doi: 10.1007/s002850200145. 
[1] 
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a nonlocal delayed reactiondiffusion system without quasimonotonicity. Discrete and Continuous Dynamical Systems  B, 2018, 23 (10) : 40634085. doi: 10.3934/dcdsb.2018126 
[2] 
Manjun Ma, XiaoQiang Zhao. Monostable waves and spreading speed for a reactiondiffusion model with seasonal succession. Discrete and Continuous Dynamical Systems  B, 2016, 21 (2) : 591606. doi: 10.3934/dcdsb.2016.21.591 
[3] 
WeiJian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reactiondiffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 43294351. doi: 10.3934/dcds.2018189 
[4] 
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reactiondiffusion predatorprey model. Discrete and Continuous Dynamical Systems  S, 2017, 10 (5) : 10631078. doi: 10.3934/dcdss.2017057 
[5] 
BangSheng Han, ZhiCheng Wang. Traveling wave solutions in a nonlocal reactiondiffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 10571076. doi: 10.3934/cpaa.2016.15.1057 
[6] 
ChengHsiung Hsu, JianJhong Lin. Stability analysis of traveling wave solutions for lattice reactiondiffusion equations. Discrete and Continuous Dynamical Systems  B, 2020, 25 (5) : 17571774. doi: 10.3934/dcdsb.2020001 
[7] 
Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3component reactiondiffusion model in smoldering combustion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 275305. doi: 10.3934/cpaa.2012.11.275 
[8] 
ZhiXian Yu, Rong Yuan. Traveling wave fronts in reactiondiffusion systems with spatiotemporal delay and applications. Discrete and Continuous Dynamical Systems  B, 2010, 13 (3) : 709728. doi: 10.3934/dcdsb.2010.13.709 
[9] 
Guo Lin, Haiyan Wang. Traveling wave solutions of a reactiondiffusion equation with statedependent delay. Communications on Pure and Applied Analysis, 2016, 15 (2) : 319334. doi: 10.3934/cpaa.2016.15.319 
[10] 
Xiaojie Hou, Yi Li. Local stability of travelingwave solutions of nonlinear reactiondiffusion equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 681701. doi: 10.3934/dcds.2006.15.681 
[11] 
Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reactiondiffusion model of influenza a drift. Discrete and Continuous Dynamical Systems  B, 2010, 13 (1) : 157174. doi: 10.3934/dcdsb.2010.13.157 
[12] 
Zhaosheng Feng. Traveling waves to a reactiondiffusion equation. Conference Publications, 2007, 2007 (Special) : 382390. doi: 10.3934/proc.2007.2007.382 
[13] 
Juliette Bouhours, Grégroie Nadin. A variational approach to reactiondiffusion equations with forced speed in dimension 1. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 18431872. doi: 10.3934/dcds.2015.35.1843 
[14] 
Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneerclimax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 14051426. doi: 10.3934/cpaa.2017067 
[15] 
ChangHong Wu. Spreading speed and traveling waves for a twospecies weak competition system with free boundary. Discrete and Continuous Dynamical Systems  B, 2013, 18 (9) : 24412455. doi: 10.3934/dcdsb.2013.18.2441 
[16] 
Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHughNagumo type ReactionDiffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 21332156. doi: 10.3934/cpaa.2017106 
[17] 
Anton S. Zadorin. Exact travelling solution for a reactiondiffusion system with a piecewise constant production supported by a codimension1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 15671580. doi: 10.3934/cpaa.2022030 
[18] 
Gregoire Nadin. How does the spreading speed associated with the FisherKPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems  B, 2015, 20 (6) : 17851803. doi: 10.3934/dcdsb.2015.20.1785 
[19] 
Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141160. doi: 10.3934/cpaa.2011.10.141 
[20] 
Ming Mei. Stability of traveling wavefronts for timedelayed reactiondiffusion equations. Conference Publications, 2009, 2009 (Special) : 526535. doi: 10.3934/proc.2009.2009.526 
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]