\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A model for the biocontrol of mosquitoes using predatory fish

Abstract Related Papers Cited by
  • We present a mathematical model for the localised control of mosquitoes using larvivorous fish. It is supposed that the adult mosquitoes choose among a finite number of isolated ponds for oviposition and that these ponds differ in various respects including physical size, survival prospects and maturation times for mosquito larvae. We model a mosquito control effort that involves stocking some or all of these ponds with larvivorous fish such as the mosquitofish Gambusia affinis. The effect of doing so may vary from pond to pond, and the ponds are coupled via the adult mosquitoes in the air. Also, adult mosquitoes may avoid ovipositing in ponds containing the larvivorous fish. Our model enables us to predict how the larvivorous fish should be allocated between ponds, and shows in particular that only certain ponds should be stocked if there is a limited supply of the fish. We also consider oviposition pond selection by mosquitoes, and show that in some situations mosquitoes might do better to simply choose a pond at random.
    Mathematics Subject Classification: Primary: 34K12, 34K20, 34K25, 92D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Araujo, L. H. S. Gil and A. e-Silva, Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions, Malaria Journal, 11 (2012), 261pp.

    [2]

    L. Blaustein and R. Karban, Indirect effects of the mosquitofish Gambusia affinis on the mosquito Culex tarsalis, Limnology and Oceanography, 35 (1990), 767-771.

    [3]
    [4]

    J. D. Charlwood, T. Smith, P. F. Billingsley, W. Takken, E. O. K. Lyimo and J. H. E. T. Meuwissen, Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of Plasmodium falciparum in humans, Bull. Entomol. Res., 87 (1997), 445-453.

    [5]

    J. E. Deacon, C. Hubbs and B. J. Zahuranec, Some effects of introduced fishes on the native fish fauna of southern Nevada, Copeia, 1964 (1964), 384-388.doi: 10.2307/1441031.

    [6]

    S. A. Gourley, R. Liu and J. Wu, Some vector borne diseases with structured host populations: Extinction and spatial spread, SIAM J. Appl. Math., 67 (2006/07), 408-433. doi: 10.1137/050648717.

    [7]

    S. A. Gourley and S. Ruan, A delay equation model for oviposition habitat selection by mosquitoes, J. Math. Biol., 65 (2012), 1125-1148.doi: 10.1007/s00285-011-0491-8.

    [8]

    W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21.doi: 10.1038/287017a0.

    [9]

    L. A. Krumholz, Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird & Girard), and its use in mosquito control, Ecological Monographs, 18 (1948), 1-43.

    [10]

    G. K. Meffe, D. A. Hendrickson and W. L. Minckley, Factors resulting in decline of the endangered Sonoran topminnow Poeciliopsis occidentalis (Atheriniformes: Poeciliidae) in the United States, Biological Conservation, 25 (1983), 135-159.

    [11]

    G. K. Meffe, Predation and species replacement in American southwestern fishes: a case study, Southwestern Naturalist, 30 (1985), 173-187.doi: 10.2307/3670732.

    [12]

    A. Mokany and R. Shine, Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles, Austral Ecology, 28 (2003), 33-37.doi: 10.1046/j.1442-9993.2003.01239.x.

    [13]

    P. B. Moyle, Inland Fishes of California, University of California Press, Berkeley, CA, 1976.

    [14]

    M. H. Reiskind and A. A. Zarrabi, Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae), J. Med. Entomol., 49 (2012), 71-76.

    [15]

    J. B. Silver, Mosquito Ecology: Field Sampling Methods, Springer, 2008.

    [16]

    H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.

    [17]

    M. Spencer, L. Blaustein and J. E. Cohen, Oviposition habitat selection by mosquitoes (culiseta longiareolata) and consequences for population size, Ecology, 83 (2002), 669-679.doi: 10.2307/3071872.

    [18]

    M. J. Wonham, T. de-Camino-Beck and M. A. Lewis, An epidemiological model for West Nile virus: Invasion analysis and control applications, Proc. R. Soc. Lond. Ser. B., 271 (2004), 501-507.doi: 10.1098/rspb.2003.2608.

    [19]

    M. Yoshioka, J. Couret, F. Kim, J. McMillan, T. R. Burkot, E. M. Dotson, U. Kitron and G. M. Vazquez-Prokopec, Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae), Parasit Vectors, 5 (2012), 225pp.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return