Citation: |
[1] |
M. Araujo, L. H. S. Gil and A. e-Silva, Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions, Malaria Journal, 11 (2012), 261pp. |
[2] |
L. Blaustein and R. Karban, Indirect effects of the mosquitofish Gambusia affinis on the mosquito Culex tarsalis, Limnology and Oceanography, 35 (1990), 767-771. |
[3] |
Centers for Disease Control (CDC), Anopheles Mosquitoes, http://www.cdc.gov/malaria/about/biology/mosquitoes/index.html. |
[4] |
J. D. Charlwood, T. Smith, P. F. Billingsley, W. Takken, E. O. K. Lyimo and J. H. E. T. Meuwissen, Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of Plasmodium falciparum in humans, Bull. Entomol. Res., 87 (1997), 445-453. |
[5] |
J. E. Deacon, C. Hubbs and B. J. Zahuranec, Some effects of introduced fishes on the native fish fauna of southern Nevada, Copeia, 1964 (1964), 384-388.doi: 10.2307/1441031. |
[6] |
S. A. Gourley, R. Liu and J. Wu, Some vector borne diseases with structured host populations: Extinction and spatial spread, SIAM J. Appl. Math., 67 (2006/07), 408-433. doi: 10.1137/050648717. |
[7] |
S. A. Gourley and S. Ruan, A delay equation model for oviposition habitat selection by mosquitoes, J. Math. Biol., 65 (2012), 1125-1148.doi: 10.1007/s00285-011-0491-8. |
[8] |
W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21.doi: 10.1038/287017a0. |
[9] |
L. A. Krumholz, Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird & Girard), and its use in mosquito control, Ecological Monographs, 18 (1948), 1-43. |
[10] |
G. K. Meffe, D. A. Hendrickson and W. L. Minckley, Factors resulting in decline of the endangered Sonoran topminnow Poeciliopsis occidentalis (Atheriniformes: Poeciliidae) in the United States, Biological Conservation, 25 (1983), 135-159. |
[11] |
G. K. Meffe, Predation and species replacement in American southwestern fishes: a case study, Southwestern Naturalist, 30 (1985), 173-187.doi: 10.2307/3670732. |
[12] |
A. Mokany and R. Shine, Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles, Austral Ecology, 28 (2003), 33-37.doi: 10.1046/j.1442-9993.2003.01239.x. |
[13] |
P. B. Moyle, Inland Fishes of California, University of California Press, Berkeley, CA, 1976. |
[14] |
M. H. Reiskind and A. A. Zarrabi, Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae), J. Med. Entomol., 49 (2012), 71-76. |
[15] |
J. B. Silver, Mosquito Ecology: Field Sampling Methods, Springer, 2008. |
[16] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995. |
[17] |
M. Spencer, L. Blaustein and J. E. Cohen, Oviposition habitat selection by mosquitoes (culiseta longiareolata) and consequences for population size, Ecology, 83 (2002), 669-679.doi: 10.2307/3071872. |
[18] |
M. J. Wonham, T. de-Camino-Beck and M. A. Lewis, An epidemiological model for West Nile virus: Invasion analysis and control applications, Proc. R. Soc. Lond. Ser. B., 271 (2004), 501-507.doi: 10.1098/rspb.2003.2608. |
[19] |
M. Yoshioka, J. Couret, F. Kim, J. McMillan, T. R. Burkot, E. M. Dotson, U. Kitron and G. M. Vazquez-Prokopec, Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae), Parasit Vectors, 5 (2012), 225pp. |