December  2014, 19(10): 3299-3317. doi: 10.3934/dcdsb.2014.19.3299

The dynamics of technological change under constraints: Adopters and resources

1. 

Departamento de Matemáticas Aplicadas y Sistemas, DMAS, Universidad Autónoma Metropolitana, Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, 05300, México, D.F., Mexico

2. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, 76230, Mexico

3. 

Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 6513677, Chile

Received  July 2013 Revised  April 2014 Published  October 2014

We present a mathematical model for a technology cycle that centers its attention on the coexistence mechanisms of competing technologies. We use a biological analogy to couple the adoption of a technology with the provision of financial resources. In our model financial resources are limited and provided at a constant rate. There are two variants analyzed in this work, the first considers the so-called internal innovation and the second introduces external innovation. We make use of the adaptive dynamics framework to explain the persistence of closely related technologies as opposed to the usual competitive exclusion of all but one dominant technology. For internal innovation the existence of a resource remanent in the full adoption case does not always lead to competitive exclusion; otherwise with the external innovation the resident technology can not be displaced. The paper illustrates the persistence of closely related technologies and the competitive exclusion in renewable energy technologies and TV sets respectively.
Citation: M. Núñez-López, J. X. Velasco-Hernández, P. A. Marquet. The dynamics of technological change under constraints: Adopters and resources. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3299-3317. doi: 10.3934/dcdsb.2014.19.3299
References:
[1]

P. Anderson and M. L. Tushman, Technological discontinuities and dominant design: A cycle model of technological change, Administrative Science Quartely, 35 (1990), 604-633.

[2]

F. Bass, A new product growth model for consumer durables, Management Science, 50 (2004), 1825-1832. doi: 10.1287/mnsc.1040.0264.

[3]

W. E. Bijker and T. P. Pinch, The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology, MIT Press, New York, 1989.

[4]

C. M. Christensen, The Innovators Dilemma: When New Technologies Cause Great Firms to Fail, Harvard Business School Press Boston, MA, 1989.

[5]

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Environmental Resources, John Wiley and Sons, 1990.

[6]

D. T. Coe, E. Helpman and A. W. Hoffmaister, North-South R & D spillovers, The Economic Journal, 107 (1997), 134-149. doi: 10.3386/w5048.

[7]

F. Dercole, U. Dieckmann, M. Obersteiner and S. Rinaldi, Adaptive dynamics and technological change, Technovation, 28 (2008), 335-348. doi: 10.1016/j.technovation.2007.11.004.

[8]

T. Devezas and J. Corredine, The biological determinants of long-wave behavior in socioeconomic growth and development, Technol. Forecast. Soc. Chang., 68 (2001), 1-57. doi: 10.1016/S0040-1625(01)00136-6.

[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612. doi: 10.1007/BF02409751.

[10]

O. Diekmann, A beginners guide to adaptive dynamics, Mathematical Modelling of Population Dynamics, Banach Center Publications, Polish Academy of Sciences, Warszawa, 63 (2004), 47-86.

[11]

G. Dosi, Technological paradigms and technological trajectories, Research Policy, 11 (1982), 147-162. doi: 10.1016/0048-7333(82)90016-6.

[12]

J. Fisher and R. Pry, A simple substitution model of technological change, Technol. Forecast. Soc. Chang., 3 (1971), 75-88. doi: 10.1016/S0040-1625(71)80005-7.

[13]

C. Freeman and C. Pérez, Structural Crises of Adjustment, Business Cycles and Investment Behaviour, in Technical Change and Economic Theory (eds. Dosi et. al.), Pinter Publishers, U.K., 1998.

[14]

G. George, Slack resources and the performance of privately held firms, Academy of Management Journal, 48 (2005), 661-676. doi: 10.5465/AMJ.2005.17843944.

[15]

A. Grübler, Technology and Global Change, The Press Syndicate of the University of Cambridge, Cambridge, UK, 1998.

[16]

R. Henderson, A. B. Jaffe and M. Trajtenberg, Universities as a source of commercial technology: A detailed analysis of university patenting, 1965-1988, Review of Economics and Statistics, 80 (1998), 119-127. doi: 10.1162/003465398557221.

[17]

G. Z. Hu Albert and A. B. Jaffe, Patent citations and international knowledge flow: The cases of Korea and Taiwan, International Journal of Industrial Organization, 21 (2005), 849-880.

[18]

A. B. Jaffe and M. Trajtenberg, International knowledge flows: Evidence from patent citations, Economics of Innovation and New Technology, 8 (1999), 105-136. doi: 10.3386/w6507.

[19]

A. B. Jaffe, M. Trajtenberg, S. Michael and Fogarty, Knowledge spillovers and patent citations: Evidence from a survey of inventors, American Economic Review, 90 (2000), 215-218. doi: 10.1257/aer.90.2.215.

[20]

A. B. Jaffe and M. Trajtenberg, Patents, Citations, and Innovations: A Window on the Knowledge Economy, The MIT Press Cambridge, Massachusetts, 2002.

[21]

N. Jonard and M. Yildizoglu, Interaction of local interactions: Localized learning and network externalities, in The Economics of Networks: Interaction and Behaviours, Springer Berlin, (1998), 189-204. doi: 10.1007/978-3-642-72260-8_8.

[22]

N. Jonard and M. Yildizoglu, Technological diversity in an evolutionary model with localized learning and network externalities, Structural Change and Economic Dynamics, 9 (1998), 35-53. doi: 10.1016/S0954-349X(97)00027-1.

[23]

W. Keller, The Geography and Channels of Diffusion at the World's Technology Frontier, NBER Working Paper 8150,, 2001., (). 

[24]

J. E. Keymer, M. A. Fuentes and P. A. Marquet, Diversity emerging: From competitive exclusion to neutral coexistence in ecosystems, Theoretical Ecology, 5 (2012), 457-463. doi: 10.1007/s12080-011-0138-9.

[25]

D. A. Levinthal, The slow pace of rapid technological change: Gradualism and punctuated in technological change, Industrial and Corporate Change, 7 (1998), 217-247. doi: 10.1093/acprof:oso/9780199269426.003.0008.

[26]

C. Marchetti, Society as a learning system: Discovery, invention and innovation cycles revisited, Technol. Forecast. Soc. Chang., 18 (1980), 267-282. doi: 10.1016/0040-1625(80)90090-6.

[27]

T. Modis, Predictions: Societys Telltale Signature Reveals the Past and Forecasts the Future, Simon and Scuster, New York, 1992.

[28]

A. Nair and D. Ahlstrom, Delayed creative destruction and the coexistence of technologies, J. Eng. Technol. Manage, 20 (2003), 345-365. doi: 10.1016/j.jengtecman.2003.08.003.

[29]

R. Nelson and S. Winter, In search of a useful theory of innovation, Research Policy, 6 (1977), 36-76. doi: 10.1016/0048-7333(77)90029-4.

[30]

, Overview of the OECD Activities on Climate Change and the Main Policy. Tackling Climate Change and Growing the Economy, OECD Report,, 2010. Available from: , (). 

[31]

F. Phillips, On S-curves and tipping points, Technol. Forecast. Soc. Chang., 74 (2007), 715-730. doi: 10.1016/j.techfore.2006.11.006.

[32]

J. A. Schumpeter, The theory of economic development, The European Heritage in Economics and the Social Sciences, 1 (2003), 61-116. doi: 10.1007/0-306-48082-4_3.

[33]

S.-J. Lee, D.-J. Lee and H.-S. Oh, Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka-Volterra model, Technol. Forecast. Soc. Chang., 72 (2005), 1044-1057.

[34]

J. Shot and F. W. Geels, Niches in evolutionary theories of technical change. A critical survey of the literature, Industrial and Corporate Change, 17 (2007), 605-622. doi: 10.1007/s00191-007-0057-5.

[35]

G. Silverberg, G. Dosi and L. Orsenigo, Innovation, diversity and diffusion: A self-organisation model, The Economic Journal, 98 (1988), 1032-1054. doi: 10.2307/2233718.

[36]

A. Stirling, On the Economics and Analysis of Diversity, SPRU Electronic Working Paper Series, 28 (1998).

[37]

J. Tan and M. W. Peng, Organizational slack and firm performance during economic transitions: Two studies from an emerging economy, Strategic Management Journal, 24 (2003), 1249-1263. doi: 10.1002/smj.351.

[38]

M. L. Tushman and P. Anderson, Technological discontinuities and organizational environments, Administrative Science Quartely, 31 (1986), 439-465. doi: 10.2307/2392832.

[39]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, The dynamics of adaptation and evolutionary branching, Physical Review Letters, 78 (1997), 2024-2027.

[40]

C. Watanabe, R. Kondo and A. Nagamatsu, Policy options for the diffusion orbit of competitive innovations: An application of Lotka-Volterra equations to Japan's transition from analog to digital TV broadcasting, Management Science, 23 (2003), 437-445. doi: 10.1016/S0166-4972(02)00004-4.

[41]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, A substitution orbit model of competitive innovations, Technol. Forecast. Soc. Chang., 71 (2004), 365-390. doi: 10.1016/S0040-1625(02)00351-7.

[42]

H. P. Young, Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence and Social Learning, SFI Working Papers,, 2007., (). 

show all references

References:
[1]

P. Anderson and M. L. Tushman, Technological discontinuities and dominant design: A cycle model of technological change, Administrative Science Quartely, 35 (1990), 604-633.

[2]

F. Bass, A new product growth model for consumer durables, Management Science, 50 (2004), 1825-1832. doi: 10.1287/mnsc.1040.0264.

[3]

W. E. Bijker and T. P. Pinch, The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology, MIT Press, New York, 1989.

[4]

C. M. Christensen, The Innovators Dilemma: When New Technologies Cause Great Firms to Fail, Harvard Business School Press Boston, MA, 1989.

[5]

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Environmental Resources, John Wiley and Sons, 1990.

[6]

D. T. Coe, E. Helpman and A. W. Hoffmaister, North-South R & D spillovers, The Economic Journal, 107 (1997), 134-149. doi: 10.3386/w5048.

[7]

F. Dercole, U. Dieckmann, M. Obersteiner and S. Rinaldi, Adaptive dynamics and technological change, Technovation, 28 (2008), 335-348. doi: 10.1016/j.technovation.2007.11.004.

[8]

T. Devezas and J. Corredine, The biological determinants of long-wave behavior in socioeconomic growth and development, Technol. Forecast. Soc. Chang., 68 (2001), 1-57. doi: 10.1016/S0040-1625(01)00136-6.

[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612. doi: 10.1007/BF02409751.

[10]

O. Diekmann, A beginners guide to adaptive dynamics, Mathematical Modelling of Population Dynamics, Banach Center Publications, Polish Academy of Sciences, Warszawa, 63 (2004), 47-86.

[11]

G. Dosi, Technological paradigms and technological trajectories, Research Policy, 11 (1982), 147-162. doi: 10.1016/0048-7333(82)90016-6.

[12]

J. Fisher and R. Pry, A simple substitution model of technological change, Technol. Forecast. Soc. Chang., 3 (1971), 75-88. doi: 10.1016/S0040-1625(71)80005-7.

[13]

C. Freeman and C. Pérez, Structural Crises of Adjustment, Business Cycles and Investment Behaviour, in Technical Change and Economic Theory (eds. Dosi et. al.), Pinter Publishers, U.K., 1998.

[14]

G. George, Slack resources and the performance of privately held firms, Academy of Management Journal, 48 (2005), 661-676. doi: 10.5465/AMJ.2005.17843944.

[15]

A. Grübler, Technology and Global Change, The Press Syndicate of the University of Cambridge, Cambridge, UK, 1998.

[16]

R. Henderson, A. B. Jaffe and M. Trajtenberg, Universities as a source of commercial technology: A detailed analysis of university patenting, 1965-1988, Review of Economics and Statistics, 80 (1998), 119-127. doi: 10.1162/003465398557221.

[17]

G. Z. Hu Albert and A. B. Jaffe, Patent citations and international knowledge flow: The cases of Korea and Taiwan, International Journal of Industrial Organization, 21 (2005), 849-880.

[18]

A. B. Jaffe and M. Trajtenberg, International knowledge flows: Evidence from patent citations, Economics of Innovation and New Technology, 8 (1999), 105-136. doi: 10.3386/w6507.

[19]

A. B. Jaffe, M. Trajtenberg, S. Michael and Fogarty, Knowledge spillovers and patent citations: Evidence from a survey of inventors, American Economic Review, 90 (2000), 215-218. doi: 10.1257/aer.90.2.215.

[20]

A. B. Jaffe and M. Trajtenberg, Patents, Citations, and Innovations: A Window on the Knowledge Economy, The MIT Press Cambridge, Massachusetts, 2002.

[21]

N. Jonard and M. Yildizoglu, Interaction of local interactions: Localized learning and network externalities, in The Economics of Networks: Interaction and Behaviours, Springer Berlin, (1998), 189-204. doi: 10.1007/978-3-642-72260-8_8.

[22]

N. Jonard and M. Yildizoglu, Technological diversity in an evolutionary model with localized learning and network externalities, Structural Change and Economic Dynamics, 9 (1998), 35-53. doi: 10.1016/S0954-349X(97)00027-1.

[23]

W. Keller, The Geography and Channels of Diffusion at the World's Technology Frontier, NBER Working Paper 8150,, 2001., (). 

[24]

J. E. Keymer, M. A. Fuentes and P. A. Marquet, Diversity emerging: From competitive exclusion to neutral coexistence in ecosystems, Theoretical Ecology, 5 (2012), 457-463. doi: 10.1007/s12080-011-0138-9.

[25]

D. A. Levinthal, The slow pace of rapid technological change: Gradualism and punctuated in technological change, Industrial and Corporate Change, 7 (1998), 217-247. doi: 10.1093/acprof:oso/9780199269426.003.0008.

[26]

C. Marchetti, Society as a learning system: Discovery, invention and innovation cycles revisited, Technol. Forecast. Soc. Chang., 18 (1980), 267-282. doi: 10.1016/0040-1625(80)90090-6.

[27]

T. Modis, Predictions: Societys Telltale Signature Reveals the Past and Forecasts the Future, Simon and Scuster, New York, 1992.

[28]

A. Nair and D. Ahlstrom, Delayed creative destruction and the coexistence of technologies, J. Eng. Technol. Manage, 20 (2003), 345-365. doi: 10.1016/j.jengtecman.2003.08.003.

[29]

R. Nelson and S. Winter, In search of a useful theory of innovation, Research Policy, 6 (1977), 36-76. doi: 10.1016/0048-7333(77)90029-4.

[30]

, Overview of the OECD Activities on Climate Change and the Main Policy. Tackling Climate Change and Growing the Economy, OECD Report,, 2010. Available from: , (). 

[31]

F. Phillips, On S-curves and tipping points, Technol. Forecast. Soc. Chang., 74 (2007), 715-730. doi: 10.1016/j.techfore.2006.11.006.

[32]

J. A. Schumpeter, The theory of economic development, The European Heritage in Economics and the Social Sciences, 1 (2003), 61-116. doi: 10.1007/0-306-48082-4_3.

[33]

S.-J. Lee, D.-J. Lee and H.-S. Oh, Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka-Volterra model, Technol. Forecast. Soc. Chang., 72 (2005), 1044-1057.

[34]

J. Shot and F. W. Geels, Niches in evolutionary theories of technical change. A critical survey of the literature, Industrial and Corporate Change, 17 (2007), 605-622. doi: 10.1007/s00191-007-0057-5.

[35]

G. Silverberg, G. Dosi and L. Orsenigo, Innovation, diversity and diffusion: A self-organisation model, The Economic Journal, 98 (1988), 1032-1054. doi: 10.2307/2233718.

[36]

A. Stirling, On the Economics and Analysis of Diversity, SPRU Electronic Working Paper Series, 28 (1998).

[37]

J. Tan and M. W. Peng, Organizational slack and firm performance during economic transitions: Two studies from an emerging economy, Strategic Management Journal, 24 (2003), 1249-1263. doi: 10.1002/smj.351.

[38]

M. L. Tushman and P. Anderson, Technological discontinuities and organizational environments, Administrative Science Quartely, 31 (1986), 439-465. doi: 10.2307/2392832.

[39]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, The dynamics of adaptation and evolutionary branching, Physical Review Letters, 78 (1997), 2024-2027.

[40]

C. Watanabe, R. Kondo and A. Nagamatsu, Policy options for the diffusion orbit of competitive innovations: An application of Lotka-Volterra equations to Japan's transition from analog to digital TV broadcasting, Management Science, 23 (2003), 437-445. doi: 10.1016/S0166-4972(02)00004-4.

[41]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, A substitution orbit model of competitive innovations, Technol. Forecast. Soc. Chang., 71 (2004), 365-390. doi: 10.1016/S0040-1625(02)00351-7.

[42]

H. P. Young, Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence and Social Learning, SFI Working Papers,, 2007., (). 

[1]

Luis C. Corchón, Clara Eugenia García. Technology transfer: Barriers and opportunities. Journal of Dynamics and Games, 2018, 5 (4) : 343-355. doi: 10.3934/jdg.2018021

[2]

Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007

[3]

Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial and Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849

[4]

Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261

[5]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098

[6]

Muhammad Waqas Iqbal, Biswajit Sarkar. Application of preservation technology for lifetime dependent products in an integrated production system. Journal of Industrial and Management Optimization, 2020, 16 (1) : 141-167. doi: 10.3934/jimo.2018144

[7]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100

[8]

Weiping Li, Haiyan Wu, Jie Yang. Intelligent recognition algorithm for social network sensitive information based on classification technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1385-1398. doi: 10.3934/dcdss.2019095

[9]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[10]

Elvio Accinelli, Filipe Martins, Humberto Muñiz, Bruno M. P. M. Oliveira, Alberto A. Pinto. Firms, technology, training and government fiscal policies: An evolutionary approach. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5723-5754. doi: 10.3934/dcdsb.2021180

[11]

Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu. Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1 (2) : 114-126. doi: 10.3934/steme.2021009

[12]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[13]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Deteriorating inventory with preservation technology under price- and stock-sensitive demand. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1585-1612. doi: 10.3934/jimo.2019019

[14]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial and Management Optimization, 2022, 18 (2) : 713-730. doi: 10.3934/jimo.2020175

[15]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1629-1650. doi: 10.3934/jimo.2021036

[16]

Chandan Mahato, Gour Chandra Mahata. Optimal replenishment, pricing and preservation technology investment policies for non-instantaneous deteriorating items under two-level trade credit policy. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021123

[17]

Shaokun Tao, Xianjin Du, Suresh P. Sethi, Xiuli He, Yu Li. Equilibrium decisions on pricing and innovation that impact reference price dynamics. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021157

[18]

Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu. Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences & Engineering, 2004, 1 (1) : 131-145. doi: 10.3934/mbe.2004.1.131

[19]

Burcu Gürbüz, Alan D. Rendall. Analysis of a model of the Calvin cycle with diffusion of ATP. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021268

[20]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (4)

[Back to Top]