December  2014, 19(10): 3299-3317. doi: 10.3934/dcdsb.2014.19.3299

The dynamics of technological change under constraints: Adopters and resources

1. 

Departamento de Matemáticas Aplicadas y Sistemas, DMAS, Universidad Autónoma Metropolitana, Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, 05300, México, D.F., Mexico

2. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, 76230, Mexico

3. 

Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 6513677, Chile

Received  July 2013 Revised  April 2014 Published  October 2014

We present a mathematical model for a technology cycle that centers its attention on the coexistence mechanisms of competing technologies. We use a biological analogy to couple the adoption of a technology with the provision of financial resources. In our model financial resources are limited and provided at a constant rate. There are two variants analyzed in this work, the first considers the so-called internal innovation and the second introduces external innovation. We make use of the adaptive dynamics framework to explain the persistence of closely related technologies as opposed to the usual competitive exclusion of all but one dominant technology. For internal innovation the existence of a resource remanent in the full adoption case does not always lead to competitive exclusion; otherwise with the external innovation the resident technology can not be displaced. The paper illustrates the persistence of closely related technologies and the competitive exclusion in renewable energy technologies and TV sets respectively.
Citation: M. Núñez-López, J. X. Velasco-Hernández, P. A. Marquet. The dynamics of technological change under constraints: Adopters and resources. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3299-3317. doi: 10.3934/dcdsb.2014.19.3299
References:
[1]

P. Anderson and M. L. Tushman, Technological discontinuities and dominant design: A cycle model of technological change, Administrative Science Quartely, 35 (1990), 604-633. Google Scholar

[2]

F. Bass, A new product growth model for consumer durables, Management Science, 50 (2004), 1825-1832. doi: 10.1287/mnsc.1040.0264.  Google Scholar

[3]

W. E. Bijker and T. P. Pinch, The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology, MIT Press, New York, 1989. Google Scholar

[4]

C. M. Christensen, The Innovators Dilemma: When New Technologies Cause Great Firms to Fail, Harvard Business School Press Boston, MA, 1989. Google Scholar

[5]

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Environmental Resources, John Wiley and Sons, 1990.  Google Scholar

[6]

D. T. Coe, E. Helpman and A. W. Hoffmaister, North-South R & D spillovers, The Economic Journal, 107 (1997), 134-149. doi: 10.3386/w5048.  Google Scholar

[7]

F. Dercole, U. Dieckmann, M. Obersteiner and S. Rinaldi, Adaptive dynamics and technological change, Technovation, 28 (2008), 335-348. doi: 10.1016/j.technovation.2007.11.004.  Google Scholar

[8]

T. Devezas and J. Corredine, The biological determinants of long-wave behavior in socioeconomic growth and development, Technol. Forecast. Soc. Chang., 68 (2001), 1-57. doi: 10.1016/S0040-1625(01)00136-6.  Google Scholar

[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612. doi: 10.1007/BF02409751.  Google Scholar

[10]

O. Diekmann, A beginners guide to adaptive dynamics, Mathematical Modelling of Population Dynamics, Banach Center Publications, Polish Academy of Sciences, Warszawa, 63 (2004), 47-86.  Google Scholar

[11]

G. Dosi, Technological paradigms and technological trajectories, Research Policy, 11 (1982), 147-162. doi: 10.1016/0048-7333(82)90016-6.  Google Scholar

[12]

J. Fisher and R. Pry, A simple substitution model of technological change, Technol. Forecast. Soc. Chang., 3 (1971), 75-88. doi: 10.1016/S0040-1625(71)80005-7.  Google Scholar

[13]

C. Freeman and C. Pérez, Structural Crises of Adjustment, Business Cycles and Investment Behaviour, in Technical Change and Economic Theory (eds. Dosi et. al.), Pinter Publishers, U.K., 1998. Google Scholar

[14]

G. George, Slack resources and the performance of privately held firms, Academy of Management Journal, 48 (2005), 661-676. doi: 10.5465/AMJ.2005.17843944.  Google Scholar

[15]

A. Grübler, Technology and Global Change, The Press Syndicate of the University of Cambridge, Cambridge, UK, 1998. Google Scholar

[16]

R. Henderson, A. B. Jaffe and M. Trajtenberg, Universities as a source of commercial technology: A detailed analysis of university patenting, 1965-1988, Review of Economics and Statistics, 80 (1998), 119-127. doi: 10.1162/003465398557221.  Google Scholar

[17]

G. Z. Hu Albert and A. B. Jaffe, Patent citations and international knowledge flow: The cases of Korea and Taiwan, International Journal of Industrial Organization, 21 (2005), 849-880. Google Scholar

[18]

A. B. Jaffe and M. Trajtenberg, International knowledge flows: Evidence from patent citations, Economics of Innovation and New Technology, 8 (1999), 105-136. doi: 10.3386/w6507.  Google Scholar

[19]

A. B. Jaffe, M. Trajtenberg, S. Michael and Fogarty, Knowledge spillovers and patent citations: Evidence from a survey of inventors, American Economic Review, 90 (2000), 215-218. doi: 10.1257/aer.90.2.215.  Google Scholar

[20]

A. B. Jaffe and M. Trajtenberg, Patents, Citations, and Innovations: A Window on the Knowledge Economy, The MIT Press Cambridge, Massachusetts, 2002. Google Scholar

[21]

N. Jonard and M. Yildizoglu, Interaction of local interactions: Localized learning and network externalities, in The Economics of Networks: Interaction and Behaviours, Springer Berlin, (1998), 189-204. doi: 10.1007/978-3-642-72260-8_8.  Google Scholar

[22]

N. Jonard and M. Yildizoglu, Technological diversity in an evolutionary model with localized learning and network externalities, Structural Change and Economic Dynamics, 9 (1998), 35-53. doi: 10.1016/S0954-349X(97)00027-1.  Google Scholar

[23]

W. Keller, The Geography and Channels of Diffusion at the World's Technology Frontier, NBER Working Paper 8150,, 2001., ().   Google Scholar

[24]

J. E. Keymer, M. A. Fuentes and P. A. Marquet, Diversity emerging: From competitive exclusion to neutral coexistence in ecosystems, Theoretical Ecology, 5 (2012), 457-463. doi: 10.1007/s12080-011-0138-9.  Google Scholar

[25]

D. A. Levinthal, The slow pace of rapid technological change: Gradualism and punctuated in technological change, Industrial and Corporate Change, 7 (1998), 217-247. doi: 10.1093/acprof:oso/9780199269426.003.0008.  Google Scholar

[26]

C. Marchetti, Society as a learning system: Discovery, invention and innovation cycles revisited, Technol. Forecast. Soc. Chang., 18 (1980), 267-282. doi: 10.1016/0040-1625(80)90090-6.  Google Scholar

[27]

T. Modis, Predictions: Societys Telltale Signature Reveals the Past and Forecasts the Future, Simon and Scuster, New York, 1992. Google Scholar

[28]

A. Nair and D. Ahlstrom, Delayed creative destruction and the coexistence of technologies, J. Eng. Technol. Manage, 20 (2003), 345-365. doi: 10.1016/j.jengtecman.2003.08.003.  Google Scholar

[29]

R. Nelson and S. Winter, In search of a useful theory of innovation, Research Policy, 6 (1977), 36-76. doi: 10.1016/0048-7333(77)90029-4.  Google Scholar

[30]

, Overview of the OECD Activities on Climate Change and the Main Policy. Tackling Climate Change and Growing the Economy, OECD Report,, 2010. Available from: , ().   Google Scholar

[31]

F. Phillips, On S-curves and tipping points, Technol. Forecast. Soc. Chang., 74 (2007), 715-730. doi: 10.1016/j.techfore.2006.11.006.  Google Scholar

[32]

J. A. Schumpeter, The theory of economic development, The European Heritage in Economics and the Social Sciences, 1 (2003), 61-116. doi: 10.1007/0-306-48082-4_3.  Google Scholar

[33]

S.-J. Lee, D.-J. Lee and H.-S. Oh, Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka-Volterra model, Technol. Forecast. Soc. Chang., 72 (2005), 1044-1057. Google Scholar

[34]

J. Shot and F. W. Geels, Niches in evolutionary theories of technical change. A critical survey of the literature, Industrial and Corporate Change, 17 (2007), 605-622. doi: 10.1007/s00191-007-0057-5.  Google Scholar

[35]

G. Silverberg, G. Dosi and L. Orsenigo, Innovation, diversity and diffusion: A self-organisation model, The Economic Journal, 98 (1988), 1032-1054. doi: 10.2307/2233718.  Google Scholar

[36]

A. Stirling, On the Economics and Analysis of Diversity, SPRU Electronic Working Paper Series, 28 (1998). Google Scholar

[37]

J. Tan and M. W. Peng, Organizational slack and firm performance during economic transitions: Two studies from an emerging economy, Strategic Management Journal, 24 (2003), 1249-1263. doi: 10.1002/smj.351.  Google Scholar

[38]

M. L. Tushman and P. Anderson, Technological discontinuities and organizational environments, Administrative Science Quartely, 31 (1986), 439-465. doi: 10.2307/2392832.  Google Scholar

[39]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, The dynamics of adaptation and evolutionary branching, Physical Review Letters, 78 (1997), 2024-2027. Google Scholar

[40]

C. Watanabe, R. Kondo and A. Nagamatsu, Policy options for the diffusion orbit of competitive innovations: An application of Lotka-Volterra equations to Japan's transition from analog to digital TV broadcasting, Management Science, 23 (2003), 437-445. doi: 10.1016/S0166-4972(02)00004-4.  Google Scholar

[41]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, A substitution orbit model of competitive innovations, Technol. Forecast. Soc. Chang., 71 (2004), 365-390. doi: 10.1016/S0040-1625(02)00351-7.  Google Scholar

[42]

H. P. Young, Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence and Social Learning, SFI Working Papers,, 2007., ().   Google Scholar

show all references

References:
[1]

P. Anderson and M. L. Tushman, Technological discontinuities and dominant design: A cycle model of technological change, Administrative Science Quartely, 35 (1990), 604-633. Google Scholar

[2]

F. Bass, A new product growth model for consumer durables, Management Science, 50 (2004), 1825-1832. doi: 10.1287/mnsc.1040.0264.  Google Scholar

[3]

W. E. Bijker and T. P. Pinch, The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology, MIT Press, New York, 1989. Google Scholar

[4]

C. M. Christensen, The Innovators Dilemma: When New Technologies Cause Great Firms to Fail, Harvard Business School Press Boston, MA, 1989. Google Scholar

[5]

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Environmental Resources, John Wiley and Sons, 1990.  Google Scholar

[6]

D. T. Coe, E. Helpman and A. W. Hoffmaister, North-South R & D spillovers, The Economic Journal, 107 (1997), 134-149. doi: 10.3386/w5048.  Google Scholar

[7]

F. Dercole, U. Dieckmann, M. Obersteiner and S. Rinaldi, Adaptive dynamics and technological change, Technovation, 28 (2008), 335-348. doi: 10.1016/j.technovation.2007.11.004.  Google Scholar

[8]

T. Devezas and J. Corredine, The biological determinants of long-wave behavior in socioeconomic growth and development, Technol. Forecast. Soc. Chang., 68 (2001), 1-57. doi: 10.1016/S0040-1625(01)00136-6.  Google Scholar

[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612. doi: 10.1007/BF02409751.  Google Scholar

[10]

O. Diekmann, A beginners guide to adaptive dynamics, Mathematical Modelling of Population Dynamics, Banach Center Publications, Polish Academy of Sciences, Warszawa, 63 (2004), 47-86.  Google Scholar

[11]

G. Dosi, Technological paradigms and technological trajectories, Research Policy, 11 (1982), 147-162. doi: 10.1016/0048-7333(82)90016-6.  Google Scholar

[12]

J. Fisher and R. Pry, A simple substitution model of technological change, Technol. Forecast. Soc. Chang., 3 (1971), 75-88. doi: 10.1016/S0040-1625(71)80005-7.  Google Scholar

[13]

C. Freeman and C. Pérez, Structural Crises of Adjustment, Business Cycles and Investment Behaviour, in Technical Change and Economic Theory (eds. Dosi et. al.), Pinter Publishers, U.K., 1998. Google Scholar

[14]

G. George, Slack resources and the performance of privately held firms, Academy of Management Journal, 48 (2005), 661-676. doi: 10.5465/AMJ.2005.17843944.  Google Scholar

[15]

A. Grübler, Technology and Global Change, The Press Syndicate of the University of Cambridge, Cambridge, UK, 1998. Google Scholar

[16]

R. Henderson, A. B. Jaffe and M. Trajtenberg, Universities as a source of commercial technology: A detailed analysis of university patenting, 1965-1988, Review of Economics and Statistics, 80 (1998), 119-127. doi: 10.1162/003465398557221.  Google Scholar

[17]

G. Z. Hu Albert and A. B. Jaffe, Patent citations and international knowledge flow: The cases of Korea and Taiwan, International Journal of Industrial Organization, 21 (2005), 849-880. Google Scholar

[18]

A. B. Jaffe and M. Trajtenberg, International knowledge flows: Evidence from patent citations, Economics of Innovation and New Technology, 8 (1999), 105-136. doi: 10.3386/w6507.  Google Scholar

[19]

A. B. Jaffe, M. Trajtenberg, S. Michael and Fogarty, Knowledge spillovers and patent citations: Evidence from a survey of inventors, American Economic Review, 90 (2000), 215-218. doi: 10.1257/aer.90.2.215.  Google Scholar

[20]

A. B. Jaffe and M. Trajtenberg, Patents, Citations, and Innovations: A Window on the Knowledge Economy, The MIT Press Cambridge, Massachusetts, 2002. Google Scholar

[21]

N. Jonard and M. Yildizoglu, Interaction of local interactions: Localized learning and network externalities, in The Economics of Networks: Interaction and Behaviours, Springer Berlin, (1998), 189-204. doi: 10.1007/978-3-642-72260-8_8.  Google Scholar

[22]

N. Jonard and M. Yildizoglu, Technological diversity in an evolutionary model with localized learning and network externalities, Structural Change and Economic Dynamics, 9 (1998), 35-53. doi: 10.1016/S0954-349X(97)00027-1.  Google Scholar

[23]

W. Keller, The Geography and Channels of Diffusion at the World's Technology Frontier, NBER Working Paper 8150,, 2001., ().   Google Scholar

[24]

J. E. Keymer, M. A. Fuentes and P. A. Marquet, Diversity emerging: From competitive exclusion to neutral coexistence in ecosystems, Theoretical Ecology, 5 (2012), 457-463. doi: 10.1007/s12080-011-0138-9.  Google Scholar

[25]

D. A. Levinthal, The slow pace of rapid technological change: Gradualism and punctuated in technological change, Industrial and Corporate Change, 7 (1998), 217-247. doi: 10.1093/acprof:oso/9780199269426.003.0008.  Google Scholar

[26]

C. Marchetti, Society as a learning system: Discovery, invention and innovation cycles revisited, Technol. Forecast. Soc. Chang., 18 (1980), 267-282. doi: 10.1016/0040-1625(80)90090-6.  Google Scholar

[27]

T. Modis, Predictions: Societys Telltale Signature Reveals the Past and Forecasts the Future, Simon and Scuster, New York, 1992. Google Scholar

[28]

A. Nair and D. Ahlstrom, Delayed creative destruction and the coexistence of technologies, J. Eng. Technol. Manage, 20 (2003), 345-365. doi: 10.1016/j.jengtecman.2003.08.003.  Google Scholar

[29]

R. Nelson and S. Winter, In search of a useful theory of innovation, Research Policy, 6 (1977), 36-76. doi: 10.1016/0048-7333(77)90029-4.  Google Scholar

[30]

, Overview of the OECD Activities on Climate Change and the Main Policy. Tackling Climate Change and Growing the Economy, OECD Report,, 2010. Available from: , ().   Google Scholar

[31]

F. Phillips, On S-curves and tipping points, Technol. Forecast. Soc. Chang., 74 (2007), 715-730. doi: 10.1016/j.techfore.2006.11.006.  Google Scholar

[32]

J. A. Schumpeter, The theory of economic development, The European Heritage in Economics and the Social Sciences, 1 (2003), 61-116. doi: 10.1007/0-306-48082-4_3.  Google Scholar

[33]

S.-J. Lee, D.-J. Lee and H.-S. Oh, Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka-Volterra model, Technol. Forecast. Soc. Chang., 72 (2005), 1044-1057. Google Scholar

[34]

J. Shot and F. W. Geels, Niches in evolutionary theories of technical change. A critical survey of the literature, Industrial and Corporate Change, 17 (2007), 605-622. doi: 10.1007/s00191-007-0057-5.  Google Scholar

[35]

G. Silverberg, G. Dosi and L. Orsenigo, Innovation, diversity and diffusion: A self-organisation model, The Economic Journal, 98 (1988), 1032-1054. doi: 10.2307/2233718.  Google Scholar

[36]

A. Stirling, On the Economics and Analysis of Diversity, SPRU Electronic Working Paper Series, 28 (1998). Google Scholar

[37]

J. Tan and M. W. Peng, Organizational slack and firm performance during economic transitions: Two studies from an emerging economy, Strategic Management Journal, 24 (2003), 1249-1263. doi: 10.1002/smj.351.  Google Scholar

[38]

M. L. Tushman and P. Anderson, Technological discontinuities and organizational environments, Administrative Science Quartely, 31 (1986), 439-465. doi: 10.2307/2392832.  Google Scholar

[39]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, The dynamics of adaptation and evolutionary branching, Physical Review Letters, 78 (1997), 2024-2027. Google Scholar

[40]

C. Watanabe, R. Kondo and A. Nagamatsu, Policy options for the diffusion orbit of competitive innovations: An application of Lotka-Volterra equations to Japan's transition from analog to digital TV broadcasting, Management Science, 23 (2003), 437-445. doi: 10.1016/S0166-4972(02)00004-4.  Google Scholar

[41]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, A substitution orbit model of competitive innovations, Technol. Forecast. Soc. Chang., 71 (2004), 365-390. doi: 10.1016/S0040-1625(02)00351-7.  Google Scholar

[42]

H. P. Young, Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence and Social Learning, SFI Working Papers,, 2007., ().   Google Scholar

[1]

Luis C. Corchón, Clara Eugenia García. Technology transfer: Barriers and opportunities. Journal of Dynamics & Games, 2018, 5 (4) : 343-355. doi: 10.3934/jdg.2018021

[2]

Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007

[3]

Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849

[4]

Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261

[5]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098

[6]

Muhammad Waqas Iqbal, Biswajit Sarkar. Application of preservation technology for lifetime dependent products in an integrated production system. Journal of Industrial & Management Optimization, 2020, 16 (1) : 141-167. doi: 10.3934/jimo.2018144

[7]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100

[8]

Weiping Li, Haiyan Wu, Jie Yang. Intelligent recognition algorithm for social network sensitive information based on classification technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1385-1398. doi: 10.3934/dcdss.2019095

[9]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[10]

Elvio Accinelli, Filipe Martins, Humberto Muñiz, Bruno M. P. M. Oliveira, Alberto A. Pinto. Firms, technology, training and government fiscal policies: An evolutionary approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5723-5754. doi: 10.3934/dcdsb.2021180

[11]

Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu. Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1 (2) : 114-126. doi: 10.3934/steme.2021009

[12]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[13]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[14]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[15]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Deteriorating inventory with preservation technology under price- and stock-sensitive demand. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1585-1612. doi: 10.3934/jimo.2019019

[16]

Shaokun Tao, Xianjin Du, Suresh P. Sethi, Xiuli He, Yu Li. Equilibrium decisions on pricing and innovation that impact reference price dynamics. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021157

[17]

Chandan Mahato, Gour Chandra Mahata. Optimal replenishment, pricing and preservation technology investment policies for non-instantaneous deteriorating items under two-level trade credit policy. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021123

[18]

Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu. Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences & Engineering, 2004, 1 (1) : 131-145. doi: 10.3934/mbe.2004.1.131

[19]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[20]

Miguel A. Dumett, Roberto Cominetti. On the stability of an adaptive learning dynamics in traffic games. Journal of Dynamics & Games, 2018, 5 (4) : 265-282. doi: 10.3934/jdg.2018017

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (4)

[Back to Top]