December  2014, 19(10): 3319-3340. doi: 10.3934/dcdsb.2014.19.3319

Evolutionarily stable diffusive dispersal

1. 

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton AB T6G 2G1, Canada, Canada

2. 

Department of Mathematical and Statistical Sciences, Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2G1, Canada

Received  July 2013 Revised  December 2013 Published  October 2014

We use an evolutionary approach to find ``most appropriate'' dispersal models for ecological applications. From a random walk with locally or nonlocally defined transition probabilities we derive a family of diffusion equations. We assume a monotonic dependence of its diffusion coefficient on the local population fitness and search for a model within this class that can invade populations with other dispersal type from the same class but is not invadable itself. We propose an optimization technique using numerically obtained principal eigenvalue of the invasion problem and obtain two candidates for evolutionary stable dispersal strategy: Fokker-Planck equation with diffusion coefficient decreasing with fitness and Attractive Diffusion equation (Okubo and Levin, 2001) with diffusion coefficient increasing with fitness. For FP case the transition probabilities are defined by the departure point and for AD case by the destination point. We show that for the case of small spatial variability of the population growth rate both models are close to the model for ideal free distribution by Cantrell et al. (2008).
Citation: Alex Potapov, Ulrike E. Schlägel, Mark A. Lewis. Evolutionarily stable diffusive dispersal. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3319-3340. doi: 10.3934/dcdsb.2014.19.3319
References:
[1]

P. A. Abrams and L. Ruokolainen, How does adaptive consumer movement affect population dynamics in consumer-resource metacommunities with homogeneous patches?, J. Theor. Biol., 277 (2011), 99-110. doi: 10.1016/j.jtbi.2011.02.019.

[2]

D. G. Aronson, The role of diffusion in mathematical biology: Skellam revisited, in Mathematics in Biology and Medicine (eds. V. Capasso, E. Grosso, S.L. Paaveri-Fontana) Springer, Berlin, (1985), 2-6. doi: 10.1007/978-3-642-93287-8_1.

[3]

J. E. Brittain and T. J. Eikeland, Invertebrate drift - a review, Hydrobiologia, 166 (1988), 77-93. doi: 10.1007/BF00017485.

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley, The Atrium, Southern Gate, 2003. doi: 10.1002/0470871296.

[5]

R. S. Cantrell, C. Cosner and Y. Lou, Approximating the ideal free distribution via reaction-diffusion-advection equations, J. Differential Equations, 245 (2008), 3687-3703. doi: 10.1016/j.jde.2008.07.024.

[6]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120.

[7]

S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development, Acta Biotheoretica, 19 (1969), 16-36. doi: 10.1007/BF01601953.

[8]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge Univ. Press, Cambridge, 1998. doi: 10.1017/CBO9781139173179.

[9]

V. Křivan, R. Cressman and C. Schneider, The ideal free distribution: A review and synthesis of the game-theoretic perspective, Theor. Population Biol., 73 (2008), 403-425.

[10]

Y. Lou, Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics, in Tutorials in Mathematical Biosciences IV Lecture Notes in Mathematics Vol. 1922, Springer, Berlin Heidelberg (2008), 171-205. doi: 10.1007/978-3-540-74331-6_5.

[11]

D. W. Morris, Adaptation and habitat selection in the eco-evolutionary process, Proc. Roy. Soc. B, 278 (2011), 2401-2411. doi: 10.1098/rspb.2011.0604.

[12]

D. W. Morris and P. Lundberg, Pillars of Evolution, Oxford Univ. Press, Oxford, 2011. doi: 10.1093/acprof:oso/9780198568797.001.0001.

[13]

L. Ni, A Perron type theorem on the principal eigenvalue of nonsymmetric elliptic operators, to appear in American Mathematical Monthly. Avalable online at URL: http://math.ucsd.edu/~lni/academic/perron-1210-2.pdf

[14]

A. Okubo and S. Levin, Diffusion and Ecological Problems, Springer, NY, 2001. doi: 10.1007/978-1-4757-4978-6.

[15]

O. Ovaskainen and S. J. Cornell, Biased Movement at a Boundary and Conditional Occupancy Times for Diffusion Processes, J. Appl. Prob., 40 (2003), 557-580. doi: 10.1239/jap/1059060888.

[16]

A. Potapov, Stochastic model of lake system invasion and its optimal control: neurodynamic programming as a solution method, Nat. Res. Mod., 22 (2009), 257-288. doi: 10.1111/j.1939-7445.2008.00036.x.

[17]

R. Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2007. ISBN 3-900051-07-0, http://www.R-project.org.

[18]

H. E. Romeijn and R. L. Smith, Simulated annealing for constrained global optimization, J. Global Optimization, 5 (1994), 101-126. doi: 10.1007/BF01100688.

[19]

P. Turchin, Quantitative Analysis of Movement, Sinauer Assoc., Sunderland, MA., 1998.

show all references

References:
[1]

P. A. Abrams and L. Ruokolainen, How does adaptive consumer movement affect population dynamics in consumer-resource metacommunities with homogeneous patches?, J. Theor. Biol., 277 (2011), 99-110. doi: 10.1016/j.jtbi.2011.02.019.

[2]

D. G. Aronson, The role of diffusion in mathematical biology: Skellam revisited, in Mathematics in Biology and Medicine (eds. V. Capasso, E. Grosso, S.L. Paaveri-Fontana) Springer, Berlin, (1985), 2-6. doi: 10.1007/978-3-642-93287-8_1.

[3]

J. E. Brittain and T. J. Eikeland, Invertebrate drift - a review, Hydrobiologia, 166 (1988), 77-93. doi: 10.1007/BF00017485.

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley, The Atrium, Southern Gate, 2003. doi: 10.1002/0470871296.

[5]

R. S. Cantrell, C. Cosner and Y. Lou, Approximating the ideal free distribution via reaction-diffusion-advection equations, J. Differential Equations, 245 (2008), 3687-3703. doi: 10.1016/j.jde.2008.07.024.

[6]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120.

[7]

S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development, Acta Biotheoretica, 19 (1969), 16-36. doi: 10.1007/BF01601953.

[8]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge Univ. Press, Cambridge, 1998. doi: 10.1017/CBO9781139173179.

[9]

V. Křivan, R. Cressman and C. Schneider, The ideal free distribution: A review and synthesis of the game-theoretic perspective, Theor. Population Biol., 73 (2008), 403-425.

[10]

Y. Lou, Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics, in Tutorials in Mathematical Biosciences IV Lecture Notes in Mathematics Vol. 1922, Springer, Berlin Heidelberg (2008), 171-205. doi: 10.1007/978-3-540-74331-6_5.

[11]

D. W. Morris, Adaptation and habitat selection in the eco-evolutionary process, Proc. Roy. Soc. B, 278 (2011), 2401-2411. doi: 10.1098/rspb.2011.0604.

[12]

D. W. Morris and P. Lundberg, Pillars of Evolution, Oxford Univ. Press, Oxford, 2011. doi: 10.1093/acprof:oso/9780198568797.001.0001.

[13]

L. Ni, A Perron type theorem on the principal eigenvalue of nonsymmetric elliptic operators, to appear in American Mathematical Monthly. Avalable online at URL: http://math.ucsd.edu/~lni/academic/perron-1210-2.pdf

[14]

A. Okubo and S. Levin, Diffusion and Ecological Problems, Springer, NY, 2001. doi: 10.1007/978-1-4757-4978-6.

[15]

O. Ovaskainen and S. J. Cornell, Biased Movement at a Boundary and Conditional Occupancy Times for Diffusion Processes, J. Appl. Prob., 40 (2003), 557-580. doi: 10.1239/jap/1059060888.

[16]

A. Potapov, Stochastic model of lake system invasion and its optimal control: neurodynamic programming as a solution method, Nat. Res. Mod., 22 (2009), 257-288. doi: 10.1111/j.1939-7445.2008.00036.x.

[17]

R. Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2007. ISBN 3-900051-07-0, http://www.R-project.org.

[18]

H. E. Romeijn and R. L. Smith, Simulated annealing for constrained global optimization, J. Global Optimization, 5 (1994), 101-126. doi: 10.1007/BF01100688.

[19]

P. Turchin, Quantitative Analysis of Movement, Sinauer Assoc., Sunderland, MA., 1998.

[1]

King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219

[2]

Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17

[3]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[4]

Jing-Jing Xiang, Yihao Fang. Evolutionarily stable dispersal strategies in a two-patch advective environment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1875-1887. doi: 10.3934/dcdsb.2018245

[5]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[6]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[7]

Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058

[8]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[9]

Kumiko Hattori, Noriaki Ogo, Takafumi Otsuka. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 289-311. doi: 10.3934/dcdss.2017014

[10]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2022, 16 (3) : 597-619. doi: 10.3934/amc.2020125

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4035-4067. doi: 10.3934/dcdss.2020458

[12]

Yong Zhang, Xingyu Yang, Baixun Li. Distribution-free solutions to the extended multi-period newsboy problem. Journal of Industrial and Management Optimization, 2017, 13 (2) : 633-647. doi: 10.3934/jimo.2016037

[13]

Xuemei Zhang, Chenhao Ma, Jiawei Hu, Wei Shi. Optimal distribution strategy and online channel mode by considering retailer's fairness concerns. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022069

[14]

Min Zhang, Guowen Xiong, Shanshan Bao, Chao Meng. A time-division distribution strategy for the two-echelon vehicle routing problem with demand blowout. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2847-2872. doi: 10.3934/jimo.2021094

[15]

Tao Jiang, Xianming Liu, Jinqiao Duan. Approximation for random stable manifolds under multiplicative correlated noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3163-3174. doi: 10.3934/dcdsb.2016091

[16]

Wenjie Li, Lihong Huang, Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2639-2664. doi: 10.3934/dcdsb.2020026

[17]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[18]

Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261

[19]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems and Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

[20]

Yong Zhang, Huifen Zhong, Yue Liu, Menghu Huang. Online ordering strategy for the discrete newsvendor problem with order value-based free-shipping. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1617-1630. doi: 10.3934/jimo.2018114

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (6)

[Back to Top]