December  2014, 19(10): 3341-3357. doi: 10.3934/dcdsb.2014.19.3341

Global analysis of within host virus models with cell-to-cell viral transmission

1. 

Department of Mathematics, University of Florida, 1400 Stadium Road, Gainesville, FL 32611, United States, United States, United States

2. 

Department of Mathematics, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada

Received  February 2013 Revised  April 2013 Published  October 2014

Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number ${\mathcal R}_0\leq 1$, the virus is cleared and the disease dies out; if ${\mathcal R}_0>1$, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters. Finally, a multi strain model incorporating cell-to-cell viral transmission is proposed and shown to exhibit a competitive exclusion principle.
Citation: Hossein Pourbashash, Sergei S. Pilyugin, Patrick De Leenheer, Connell McCluskey. Global analysis of within host virus models with cell-to-cell viral transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3341-3357. doi: 10.3934/dcdsb.2014.19.3341
References:
[1]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations,, Heath and Co., (1965).   Google Scholar

[2]

P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis,, SIAM J. Appl. Math., 63 (2003), 1313.  doi: 10.1137/S0036139902406905.  Google Scholar

[3]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Math. Med. Biol., 25 (2008), 285.   Google Scholar

[4]

N. Dixit and A. Perelson, Multiplicity of human immunodeficiency virus infections in lymphoid tissue,, J. Virol., 78 (2004), 8942.  doi: 10.1128/JVI.78.16.8942-8945.2004.  Google Scholar

[5]

M. Fiedler, Additive compound matrices and inequality for eigenvalues of stochastic matrices,, Czech. Math. J., 24 (1974), 392.   Google Scholar

[6]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Differential Equations, 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[7]

H. K. Khalil, Nonlinear Systems,, 3rd Edition, (2002).   Google Scholar

[8]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages,, Bull. Math. Biol., 71 (2009), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[9]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191.  doi: 10.1016/S0025-5564(99)00030-9.  Google Scholar

[10]

M. Y. Li and J. S. Muldowney, A geometric approach to the global-stability problems,, SIAM J. Math. Anal., 27 (1996), 1070.  doi: 10.1137/S0036141094266449.  Google Scholar

[11]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology,, Math. Biosci., 125 (1995), 155.  doi: 10.1016/0025-5564(95)92756-5.  Google Scholar

[12]

R. H. Jr. Martin, Logarithmic norms and projections applied to linear differential systems,, J. Math. Anal. Appl., 45 (1974), 432.  doi: 10.1016/0022-247X(74)90084-5.  Google Scholar

[13]

D. Mazurov, A. Ilinskaya, G. Heidecker, P. Lloyd and D. Derse, Quantitative comparison of HTLV-1 and HIV-1 Cell-to- Cell infection with new replication dependent vectors,, PLoS Pathogens, 6 (2010).  doi: 10.1371/journal.ppat.1000788.  Google Scholar

[14]

B. Monel, E. Beaumont, D. Vendrame, O. Schwartz, D. Brand and F. Mammano, HIV cell-to-cell transmission requires the production of infectious virus particles and does not proceed through Env-mediated fusion pores,, J. Virol., 86 (2012), 3924.  doi: 10.1128/JVI.06478-11.  Google Scholar

[15]

J. S. Muldowney, Compound matrices and ordinary differential equations,, Rocky Mount. J. Math., 20 (1990), 857.  doi: 10.1216/rmjm/1181073047.  Google Scholar

[16]

M. A. Nowak and R. M. May, Virus Dynamics,, Oxford University press, (2000).   Google Scholar

[17]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[18]

V. Piguet and Q. Sattentau, Dangerous liaisons at the virological synapse,, J. Clin. Invest., 114 (2004), 605.  doi: 10.1172/JCI200422812.  Google Scholar

[19]

O. Schwartz, Immunological and virological aspects of HIV cell-to-cell transfer,, Retrovirology, 6 (2009).  doi: 10.1186/1742-4690-6-S2-I16.  Google Scholar

[20]

H. L. Smith and P. Waltman, Perturbation of a globally stable steady state,, Proc. Am. Math. Soc., 127 (1999), 447.  doi: 10.1090/S0002-9939-99-04768-1.  Google Scholar

[21]

M. Sourisseau, N. Sol-Foulon, F. Porrot, F. Blanchet and O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes,, J. Virol., 81 (2007), 1000.  doi: 10.1128/JVI.01629-06.  Google Scholar

[22]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[23]

L. Wang and S. Ellermeyer, HIV infection and $CD4^+$ T cell dynamics,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1417.  doi: 10.3934/dcdsb.2006.6.1417.  Google Scholar

[24]

L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of $CD4^{+}$ T cells,, Math. Biosci., 200 (2006), 44.  doi: 10.1016/j.mbs.2005.12.026.  Google Scholar

show all references

References:
[1]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations,, Heath and Co., (1965).   Google Scholar

[2]

P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis,, SIAM J. Appl. Math., 63 (2003), 1313.  doi: 10.1137/S0036139902406905.  Google Scholar

[3]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Math. Med. Biol., 25 (2008), 285.   Google Scholar

[4]

N. Dixit and A. Perelson, Multiplicity of human immunodeficiency virus infections in lymphoid tissue,, J. Virol., 78 (2004), 8942.  doi: 10.1128/JVI.78.16.8942-8945.2004.  Google Scholar

[5]

M. Fiedler, Additive compound matrices and inequality for eigenvalues of stochastic matrices,, Czech. Math. J., 24 (1974), 392.   Google Scholar

[6]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Differential Equations, 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[7]

H. K. Khalil, Nonlinear Systems,, 3rd Edition, (2002).   Google Scholar

[8]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages,, Bull. Math. Biol., 71 (2009), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[9]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191.  doi: 10.1016/S0025-5564(99)00030-9.  Google Scholar

[10]

M. Y. Li and J. S. Muldowney, A geometric approach to the global-stability problems,, SIAM J. Math. Anal., 27 (1996), 1070.  doi: 10.1137/S0036141094266449.  Google Scholar

[11]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology,, Math. Biosci., 125 (1995), 155.  doi: 10.1016/0025-5564(95)92756-5.  Google Scholar

[12]

R. H. Jr. Martin, Logarithmic norms and projections applied to linear differential systems,, J. Math. Anal. Appl., 45 (1974), 432.  doi: 10.1016/0022-247X(74)90084-5.  Google Scholar

[13]

D. Mazurov, A. Ilinskaya, G. Heidecker, P. Lloyd and D. Derse, Quantitative comparison of HTLV-1 and HIV-1 Cell-to- Cell infection with new replication dependent vectors,, PLoS Pathogens, 6 (2010).  doi: 10.1371/journal.ppat.1000788.  Google Scholar

[14]

B. Monel, E. Beaumont, D. Vendrame, O. Schwartz, D. Brand and F. Mammano, HIV cell-to-cell transmission requires the production of infectious virus particles and does not proceed through Env-mediated fusion pores,, J. Virol., 86 (2012), 3924.  doi: 10.1128/JVI.06478-11.  Google Scholar

[15]

J. S. Muldowney, Compound matrices and ordinary differential equations,, Rocky Mount. J. Math., 20 (1990), 857.  doi: 10.1216/rmjm/1181073047.  Google Scholar

[16]

M. A. Nowak and R. M. May, Virus Dynamics,, Oxford University press, (2000).   Google Scholar

[17]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[18]

V. Piguet and Q. Sattentau, Dangerous liaisons at the virological synapse,, J. Clin. Invest., 114 (2004), 605.  doi: 10.1172/JCI200422812.  Google Scholar

[19]

O. Schwartz, Immunological and virological aspects of HIV cell-to-cell transfer,, Retrovirology, 6 (2009).  doi: 10.1186/1742-4690-6-S2-I16.  Google Scholar

[20]

H. L. Smith and P. Waltman, Perturbation of a globally stable steady state,, Proc. Am. Math. Soc., 127 (1999), 447.  doi: 10.1090/S0002-9939-99-04768-1.  Google Scholar

[21]

M. Sourisseau, N. Sol-Foulon, F. Porrot, F. Blanchet and O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes,, J. Virol., 81 (2007), 1000.  doi: 10.1128/JVI.01629-06.  Google Scholar

[22]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[23]

L. Wang and S. Ellermeyer, HIV infection and $CD4^+$ T cell dynamics,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1417.  doi: 10.3934/dcdsb.2006.6.1417.  Google Scholar

[24]

L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of $CD4^{+}$ T cells,, Math. Biosci., 200 (2006), 44.  doi: 10.1016/j.mbs.2005.12.026.  Google Scholar

[1]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[2]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[3]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

[4]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[7]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[10]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[11]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[12]

Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068

[13]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[14]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[15]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[16]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[17]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[18]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[19]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (28)

[Back to Top]