March  2014, 19(2): 373-389. doi: 10.3934/dcdsb.2014.19.373

Nonlocal convection-diffusion volume-constrained problems and jump processes

1. 

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States

2. 

Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185-1320, United States

Received  June 2013 Revised  November 2013 Published  February 2014

We introduce the Cauchy and time-dependent volume-constrained problems associated with a linear nonlocal convection-diffusion equation. These problems are shown to be well-posed and correspond to conventional convection-diffusion equations as the region of nonlocality vanishes. The problems also share a number of features such as the maximum principle, conservation and dispersion relations, all of which are consistent with their corresponding local counterparts. Moreover, these problems are the master equations for a class of finite activity Lévy-type processes with nonsymmetric Lévy measure. Monte Carlo simulations and finite difference schemes are applied to these nonlocal problems, to show the effects of time, kernel, nonlocality and different volume-constraints.
Citation: Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Mathematical Surveys and Monographs, (2010).   Google Scholar

[2]

K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes,, Probability Theory and Related Fields, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[3]

N. Burch and R. Lehoucq, Classical, nonlocal, and fractional diffusion equations on bounded domains,, International Journal for Multiscale Computational Engineering, 9 (2011), 661.  doi: 10.1615/IntJMultCompEng.2011002402.  Google Scholar

[4]

________, Continuous-time random walks on bounded domains,, Physical Review E, 83 (2011).   Google Scholar

[5]

N. Burch and R. B. Lehoucq, Computing the Exit-Time for a Symmetric Finite-Range Jump Process,, Technical report SAND 2013-2354J, (2013), 2013.   Google Scholar

[6]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints,, SIAM review, 54 (2012), 667.  doi: 10.1137/110833294.  Google Scholar

[7]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws,, Mathematical Models and Methods in Applied Sciences, 23 (2013), 493.  doi: 10.1142/S0218202512500546.  Google Scholar

[8]

Q. Du, J. Kamm, R. Lehoucq and M. Parks, A new approach for a nonlocal, nonlinear conservation law,, SIAM Journal on Applied Mathematics, 72 (2012), 464.  doi: 10.1137/110833233.  Google Scholar

[9]

L. Ignat and J. Rossi, A nonlocal convection-diffusion equation,, Journal of Functional Analysis, 251 (2007), 399.  doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[10]

T. Mengesha and Q. Du, Analysis of a scalar nonlocal peridynamic model with a sign changing kernel,, Disc. Cont. Dyn. Sys, 18 (2013), 1415.  doi: 10.3934/dcdsb.2013.18.1415.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Mathematical Surveys and Monographs, (2010).   Google Scholar

[2]

K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes,, Probability Theory and Related Fields, 127 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[3]

N. Burch and R. Lehoucq, Classical, nonlocal, and fractional diffusion equations on bounded domains,, International Journal for Multiscale Computational Engineering, 9 (2011), 661.  doi: 10.1615/IntJMultCompEng.2011002402.  Google Scholar

[4]

________, Continuous-time random walks on bounded domains,, Physical Review E, 83 (2011).   Google Scholar

[5]

N. Burch and R. B. Lehoucq, Computing the Exit-Time for a Symmetric Finite-Range Jump Process,, Technical report SAND 2013-2354J, (2013), 2013.   Google Scholar

[6]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints,, SIAM review, 54 (2012), 667.  doi: 10.1137/110833294.  Google Scholar

[7]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws,, Mathematical Models and Methods in Applied Sciences, 23 (2013), 493.  doi: 10.1142/S0218202512500546.  Google Scholar

[8]

Q. Du, J. Kamm, R. Lehoucq and M. Parks, A new approach for a nonlocal, nonlinear conservation law,, SIAM Journal on Applied Mathematics, 72 (2012), 464.  doi: 10.1137/110833233.  Google Scholar

[9]

L. Ignat and J. Rossi, A nonlocal convection-diffusion equation,, Journal of Functional Analysis, 251 (2007), 399.  doi: 10.1016/j.jfa.2007.07.013.  Google Scholar

[10]

T. Mengesha and Q. Du, Analysis of a scalar nonlocal peridynamic model with a sign changing kernel,, Disc. Cont. Dyn. Sys, 18 (2013), 1415.  doi: 10.3934/dcdsb.2013.18.1415.  Google Scholar

[1]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[5]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[6]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[7]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[11]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[14]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[15]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[16]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[17]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[20]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (131)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]