• Previous Article
    Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections
  • DCDS-B Home
  • This Issue
  • Next Article
    Hyperbolic quenching problem with damping in the micro-electro mechanical system device
March  2014, 19(2): 435-446. doi: 10.3934/dcdsb.2014.19.435

Volatility in options formulae for general stochastic dynamics

1. 

School of Mathematical Sciences, Monash University, Victoria 3800, Australia, Australia

2. 

School of Mathematical Sciences, Monash University Vic 3800

Received  May 2013 Revised  December 2013 Published  February 2014

It is well-known that the Black-Scholes formula has been derived under the assumption of constant volatility in stocks. In spite of evidence that this parameter is not constant, this formula is widely used by financial markets. This paper addresses the question of whether an alternative model for stock price exists for which the Black-Scholes or similar formulae hold. The results obtained in this paper are very general as no assumptions are made on the dynamics of the model, whether it be the underlying price process, the volatility process or how they relate to each other. We show that if the formula holds for a continuum of strikes and three terminal times then the volatility must be constant. However, when it only holds for finitely many strikes, and three or more maturity times, we obtain a universal bound on the variation of the volatility. This bound yields that the implied volatility is constant when the sequence of strikes increases to cover the entire half-line. This recovers the result for a continuum of strikes by a different approach.
Citation: Kais Hamza, Fima C. Klebaner, Olivia Mah. Volatility in options formulae for general stochastic dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 435-446. doi: 10.3934/dcdsb.2014.19.435
References:
[1]

D. Aldous, Stopping times and tightness,, Annals of Probability, 6 (1978), 335.  doi: 10.1214/aop/1176995579.  Google Scholar

[2]

K. Hamza and F. C. Klebaner, On nonexistence of non-constant volatility in the Black-Scholes formula,, Discrete and Continuous Dynamical Systems, 6 (2006), 829.  doi: 10.3934/dcdsb.2006.6.829.  Google Scholar

[3]

K. Hamza and F. C. Klebaner, On one inverse problem in financial mathematics,, Journal of Uncertain Systems, 1 (2007), 246.   Google Scholar

[4]

K. Hamza and F. C. Klebaner, On the implicit Black-Scholes formula,, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 97.  doi: 10.1080/17442500701607706.  Google Scholar

[5]

K. Hamza and F. C. Klebaner, Martingales in the Itô-Tanaka formula with applications,, Submitted., ().   Google Scholar

[6]

K. Hamza, S. Jacka and F. C. Klebaner, The EMM conditions in a general model for interest rates,, Advances in Applied Probability, 37 (2005), 415.  doi: 10.1239/aap/1118858632.  Google Scholar

[7]

F. C. Klebaner and R. Liptser, When a stochastic exponential is a true martingale. Extension of a method of Beneŝ,, Teoriya Veroyatnostei i ee Primeneniya, 58 (2013), 53.   Google Scholar

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Graduate Texts in Mathematics, (1991).  doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[9]

A. T. Wang, Generalized Ito's formula and additive functionals of Brownian motion,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 153.  doi: 10.1007/BF00538419.  Google Scholar

show all references

References:
[1]

D. Aldous, Stopping times and tightness,, Annals of Probability, 6 (1978), 335.  doi: 10.1214/aop/1176995579.  Google Scholar

[2]

K. Hamza and F. C. Klebaner, On nonexistence of non-constant volatility in the Black-Scholes formula,, Discrete and Continuous Dynamical Systems, 6 (2006), 829.  doi: 10.3934/dcdsb.2006.6.829.  Google Scholar

[3]

K. Hamza and F. C. Klebaner, On one inverse problem in financial mathematics,, Journal of Uncertain Systems, 1 (2007), 246.   Google Scholar

[4]

K. Hamza and F. C. Klebaner, On the implicit Black-Scholes formula,, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 97.  doi: 10.1080/17442500701607706.  Google Scholar

[5]

K. Hamza and F. C. Klebaner, Martingales in the Itô-Tanaka formula with applications,, Submitted., ().   Google Scholar

[6]

K. Hamza, S. Jacka and F. C. Klebaner, The EMM conditions in a general model for interest rates,, Advances in Applied Probability, 37 (2005), 415.  doi: 10.1239/aap/1118858632.  Google Scholar

[7]

F. C. Klebaner and R. Liptser, When a stochastic exponential is a true martingale. Extension of a method of Beneŝ,, Teoriya Veroyatnostei i ee Primeneniya, 58 (2013), 53.   Google Scholar

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Graduate Texts in Mathematics, (1991).  doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[9]

A. T. Wang, Generalized Ito's formula and additive functionals of Brownian motion,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 153.  doi: 10.1007/BF00538419.  Google Scholar

[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[12]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]