• Previous Article
    Hyperbolic quenching problem with damping in the micro-electro mechanical system device
  • DCDS-B Home
  • This Issue
  • Next Article
    Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections
March  2014, 19(2): 435-446. doi: 10.3934/dcdsb.2014.19.435

Volatility in options formulae for general stochastic dynamics

1. 

School of Mathematical Sciences, Monash University, Victoria 3800, Australia, Australia

2. 

School of Mathematical Sciences, Monash University Vic 3800

Received  May 2013 Revised  December 2013 Published  February 2014

It is well-known that the Black-Scholes formula has been derived under the assumption of constant volatility in stocks. In spite of evidence that this parameter is not constant, this formula is widely used by financial markets. This paper addresses the question of whether an alternative model for stock price exists for which the Black-Scholes or similar formulae hold. The results obtained in this paper are very general as no assumptions are made on the dynamics of the model, whether it be the underlying price process, the volatility process or how they relate to each other. We show that if the formula holds for a continuum of strikes and three terminal times then the volatility must be constant. However, when it only holds for finitely many strikes, and three or more maturity times, we obtain a universal bound on the variation of the volatility. This bound yields that the implied volatility is constant when the sequence of strikes increases to cover the entire half-line. This recovers the result for a continuum of strikes by a different approach.
Citation: Kais Hamza, Fima C. Klebaner, Olivia Mah. Volatility in options formulae for general stochastic dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 435-446. doi: 10.3934/dcdsb.2014.19.435
References:
[1]

D. Aldous, Stopping times and tightness,, Annals of Probability, 6 (1978), 335. doi: 10.1214/aop/1176995579. Google Scholar

[2]

K. Hamza and F. C. Klebaner, On nonexistence of non-constant volatility in the Black-Scholes formula,, Discrete and Continuous Dynamical Systems, 6 (2006), 829. doi: 10.3934/dcdsb.2006.6.829. Google Scholar

[3]

K. Hamza and F. C. Klebaner, On one inverse problem in financial mathematics,, Journal of Uncertain Systems, 1 (2007), 246. Google Scholar

[4]

K. Hamza and F. C. Klebaner, On the implicit Black-Scholes formula,, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 97. doi: 10.1080/17442500701607706. Google Scholar

[5]

K. Hamza and F. C. Klebaner, Martingales in the Itô-Tanaka formula with applications,, Submitted., (). Google Scholar

[6]

K. Hamza, S. Jacka and F. C. Klebaner, The EMM conditions in a general model for interest rates,, Advances in Applied Probability, 37 (2005), 415. doi: 10.1239/aap/1118858632. Google Scholar

[7]

F. C. Klebaner and R. Liptser, When a stochastic exponential is a true martingale. Extension of a method of Beneŝ,, Teoriya Veroyatnostei i ee Primeneniya, 58 (2013), 53. Google Scholar

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Graduate Texts in Mathematics, (1991). doi: 10.1007/978-1-4612-0949-2. Google Scholar

[9]

A. T. Wang, Generalized Ito's formula and additive functionals of Brownian motion,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 153. doi: 10.1007/BF00538419. Google Scholar

show all references

References:
[1]

D. Aldous, Stopping times and tightness,, Annals of Probability, 6 (1978), 335. doi: 10.1214/aop/1176995579. Google Scholar

[2]

K. Hamza and F. C. Klebaner, On nonexistence of non-constant volatility in the Black-Scholes formula,, Discrete and Continuous Dynamical Systems, 6 (2006), 829. doi: 10.3934/dcdsb.2006.6.829. Google Scholar

[3]

K. Hamza and F. C. Klebaner, On one inverse problem in financial mathematics,, Journal of Uncertain Systems, 1 (2007), 246. Google Scholar

[4]

K. Hamza and F. C. Klebaner, On the implicit Black-Scholes formula,, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 97. doi: 10.1080/17442500701607706. Google Scholar

[5]

K. Hamza and F. C. Klebaner, Martingales in the Itô-Tanaka formula with applications,, Submitted., (). Google Scholar

[6]

K. Hamza, S. Jacka and F. C. Klebaner, The EMM conditions in a general model for interest rates,, Advances in Applied Probability, 37 (2005), 415. doi: 10.1239/aap/1118858632. Google Scholar

[7]

F. C. Klebaner and R. Liptser, When a stochastic exponential is a true martingale. Extension of a method of Beneŝ,, Teoriya Veroyatnostei i ee Primeneniya, 58 (2013), 53. Google Scholar

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Graduate Texts in Mathematics, (1991). doi: 10.1007/978-1-4612-0949-2. Google Scholar

[9]

A. T. Wang, Generalized Ito's formula and additive functionals of Brownian motion,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 153. doi: 10.1007/BF00538419. Google Scholar

[1]

Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829

[2]

Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505

[3]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[4]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019036

[5]

Lixin Wu, Fan Zhang. LIBOR market model with stochastic volatility. Journal of Industrial & Management Optimization, 2006, 2 (2) : 199-227. doi: 10.3934/jimo.2006.2.199

[6]

Vinicius Albani, Uri M. Ascher, Xu Yang, Jorge P. Zubelli. Data driven recovery of local volatility surfaces. Inverse Problems & Imaging, 2017, 11 (5) : 799-823. doi: 10.3934/ipi.2017038

[7]

Yaxian Xu, Ajay Jasra. Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects. Foundations of Data Science, 2019, 1 (1) : 61-85. doi: 10.3934/fods.2019003

[8]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

[9]

Lishang Jiang, Baojun Bian. The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2017-2046. doi: 10.3934/dcdsb.2012.17.2017

[10]

Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185

[11]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[12]

Qihong Chen. Recovery of local volatility for financial assets with mean-reverting price processes. Mathematical Control & Related Fields, 2018, 8 (3&4) : 625-635. doi: 10.3934/mcrf.2018026

[13]

Laurent Devineau, Pierre-Edouard Arrouy, Paul Bonnefoy, Alexandre Boumezoued. Fast calibration of the Libor market model with stochastic volatility and displaced diffusion. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-31. doi: 10.3934/jimo.2019025

[14]

Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354

[15]

Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-31. doi: 10.3934/jimo.2018141

[16]

Kai Zhang, Kok Lay Teo. A penalty-based method from reconstructing smooth local volatility surface from American options. Journal of Industrial & Management Optimization, 2015, 11 (2) : 631-644. doi: 10.3934/jimo.2015.11.631

[17]

Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028

[18]

Robert J. Elliott, Tak Kuen Siu. Stochastic volatility with regime switching and uncertain noise: Filtering with sub-linear expectations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 59-81. doi: 10.3934/dcdsb.2017003

[19]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[20]

Hwa-Sung Kim, Bara Kim, Jerim Kim. Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps. Journal of Industrial & Management Optimization, 2014, 10 (1) : 41-55. doi: 10.3934/jimo.2014.10.41

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]