\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability and bifurcation of a viscous incompressible plasma fluid contained between two concentric rotating cylinders

Abstract Related Papers Cited by
  • In this paper, our objective is to apply the attractor bifurcation theory to study the stability and bifurcation of a viscous incompressible plasma fluid contained between two concentric rotating cylinders. We get a dimensionless parameter $T$ which can describe the stability and bifurcation of the plasma fluid through calculation. When $T$ is smaller than a critical number $T_0$, the plasma fluid is stable. When $T$ crosses the critical number $T_0$, the plasma fluid becomes unstable and will generate a new magnetic field which has an interesting structure.
    Mathematics Subject Classification: Primary: 76W05, 76U05, 82D10; Secondary: 37N20, 37G30, 37G35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Chandrasekhar, Hydrodynamic and hydromagnetic Stability, The International Series of Monographs on Physics Clarendon Press, Oxford, 1961. xix+654 pp. (16 plates).

    [2]

    D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993.doi: 10.1017/CBO9780511599965.

    [3]

    P. Drazin and W. Reid, Hydrodynamic Stability, Cambridge University Press, 1981.

    [4]

    C. Foias, O. Manley and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Nonlinear Anal, 11 (1987), no.8, 939-967.doi: 10.1016/0362-546X(87)90061-7.

    [5]

    D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. iv+348 pp. ISBN: 3-540-10557-3

    [6]

    V. I. Iudovich, Secondary flows and fluid instability between rotating cylinders, Prikl. Mat. Meh., 30 688-698 (Russian); translated as J. Appl. Math. Mech. 30 (1966), 822-833.doi: 10.1016/0021-8928(66)90033-5.

    [7]

    K. Kirchg$\ddota$ssner, Bifurcation in nonlinear hydrodynamic stability, SIAM Rev., 17 (1975), 652-683.doi: 10.1137/1017072.

    [8]

    R. Moreau, Magnetohydrodynamics, Kluwer Academic Publishers, Dordrecht, 1990.

    [9]

    T. Ma and S. Wang, Structural classification and stability of divergence-free vector fields, Phys. D, 171 (2002), 107-126.doi: 10.1016/S0167-2789(02)00587-0.

    [10]

    T. Ma and S. Wang, Stability and bifurcation of the Taylor problem, Arch. Ration. Mech. Anal., 181 (2006), 149-176.doi: 10.1007/s00205-006-0415-8.

    [11]

    T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. xiv+375 pp. ISBN: 981-256-287-7doi: 10.1142/9789812701152.

    [12]

    T. Ma and S. Wang, Geometric theory of incompressible flows with applications to fluid dynamics, Mathematical Surveys and Monographs, 119. American Mathematical Society, Providence, RI, 2005. x+234 pp. ISBN: 0-8218-3693-5

    [13]

    T. Ma and S. Wang, Stability and Bifurcation of Nolinear Evolution Equations, Science Press, Beijing, 2007.

    [14]

    R. V. Polovin and V. P. Demutskii, Fundamentals of Magnetohydrodynamics, Consultants Bureau, New York, 1990.

    [15]

    G. I. Taylor, Stability of a viscous liquid contained between two rotating cyinders, Phil. Trans. Roy. Soc. Lond. A, 223, 289-343. Also in Sci, Paper4, 34-85.[125,127,129,130]

    [16]

    W. Velte, Stabilit$\ddota$t and verzweigung station$\ddotarer$ l$\ddot{0}$sungen der davier-stokeschen gleichungen beim Taylorproblem, Arch. Ration. Mech. Anal., 22 (1966), 1-14.doi: 10.1007/BF00281240.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return