Citation: |
[1] |
J. A. Adam and N. Bellomo, A Survey of Models for Tumor-immune System Dynamics, Birkhauser, Boston, 1997.doi: 10.1007/978-0-8176-8119-7. |
[2] |
J. C. Arciero, T. L. Jackson and D. E. Kirschner, A mathematical model of tumor-immune evasion and siRNA treatment, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 39-58. |
[3] |
T. Boon and P. Van der Bruggen, Human tumor antigens recognized by T lymphocytes, J. Exp. Med., 183 (1996), 725-729.doi: 10.1084/jem.183.3.725. |
[4] |
C. Bourgeois, B. Rocha and C. Tanchot, A role for CD40 expression on CD8$^+$ T cells in the generation of CD8$^+$ T cell memory, Science, 297 (2002), 2060-2063.doi: 10.1126/science.1072615. |
[5] |
L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950-7958. |
[6] |
L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841-862.doi: 10.1016/j.jtbi.2005.06.037. |
[7] |
K. E. de Visser, A. Eichten and L. M. Coussens, Paradoxical roles of the immune system during cancer development, Nat. Rev. Cancer, 6 (2006), 24-37. |
[8] |
A. d'Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences, Phys. D, 208 (2005), 220-235.doi: 10.1016/j.physd.2005.06.032. |
[9] |
R. Eftimie, J. L. Bramson and D. J. D. Earn, Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma, J. Theor. Biol., 265 (2010), 467-480.doi: 10.1016/j.jtbi.2010.04.030. |
[10] |
R. Eftimie, J. L. Bramson and D. J. D. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.doi: 10.1007/s11538-010-9526-3. |
[11] |
B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, Philadelphia, 2002.doi: 10.1137/1.9780898718195. |
[12] |
P. Fortin and M. C. Mackey, Periodic chronic myelogenous leukaemia: spectral analysis of blood cell counts and aetiological implications, Brit. J. Haematol., 104 (1999), 336-345.doi: 10.1046/j.1365-2141.1999.01168.x. |
[13] |
M. Galach, Dynamics of the tumor-immune system competition-the effect of time delay, Int. J. Appl. Math. Comput. Sci., 13 (2003), 395-406. |
[14] |
K. Hung, R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll and H. Levitsky, The central role of CD4+ T cells in the antitumor immune response, J. Exp. Med., 188 (1998), 2357-2368.doi: 10.1084/jem.188.12.2357. |
[15] |
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252.doi: 10.1007/s002850050127. |
[16] |
D. Kirschner and A. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy, Math. Biosci. Eng., 6 (2009), 573-583.doi: 10.3934/mbe.2009.6.573. |
[17] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 2 (1994), 295-321. |
[18] |
Y. P. Lai, C. J. Jeng and S. C. Chen, The roles of CD4$^+$ T cells in tumor immunity, ISRN Immunology, 2011 (2011), 1-6.doi: 10.5402/2011/497397. |
[19] |
C. Letellier, F. Denis and L. A. Aguirre, What can be learned from a chaotic cancer model? J. Theor. Biol., 322 (2013), 7-16.doi: 10.1016/j.jtbi.2013.01.003. |
[20] |
O. Lejeune, M. A. J. Chaplain and I. EI Akili, Oscillations and bistability in the dynamics of cytotoxic reactions mediated by the response of immune cells to solid tumours, Math. Comput. Modelling, 47 (2008), 649-662.doi: 10.1016/j.mcm.2007.02.026. |
[21] |
D. Liu, S. Ruan and D. Zhu, Bifurcation analysis in models of tumor and immune system interactions, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 151-168.doi: 10.3934/dcdsb.2009.12.151. |
[22] |
D. Liu, S. Ruan and D. Zhu, Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, Math. Biosci. Eng., 9 (2012), 347-368.doi: 10.3934/mbe.2012.9.347. |
[23] |
M. F. Mackey, R. J. Jr Barth and R. J. Noelle, The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells, J. Leukoc. Biol., 63 (1998), 418-428. |
[24] |
J. E. Marsden and M. McKracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976. |
[25] |
D. Mucida, M. M. Husain, S. Muroi et. al, Transcriptional reprogramming of mature CD4$^+$ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes, Nat. Immunol., 14 (2013), 281-289.doi: 10.1038/ni.2523. |
[26] |
A. Perez-Diez, N. T. Joncker, K. Choi, W. F. N. Chan, C. C. Anderson, O. Lantz and P. Matzinger, CD4 cells can be more efficient at tumor rejection than CD8 cells, Blood, 109 (2007), 5346-5354. |
[27] |
S. A. Quezada, T. R. Simpson, K. S. Peggs, T. Merghoub, J. Vider, X. Z. Fan, R. Blasberg, H. Yagita, P. Muranski, P. A. Antony, N. P. Restifo and J. P. Allison, Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts, J. Exp. Med., 207 (2010), 637-650.doi: 10.1084/jem.20091918. |
[28] |
S. A. Rosenberg, Progress in human tumour immunology and immunotherapy, Nature, 411 (2001), 380-384. |
[29] |
S. Ruan and G. S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay, J. Math. Anal. Appl., 204 (1996), 786-812.doi: 10.1006/jmaa.1996.0468. |
[30] |
K. E. Starkov and L. N. Coria, Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy, Nonlinear Anal. Real World Appl., 14 (2013), 1425-1433.doi: 10.1016/j.nonrwa.2012.10.006. |
[31] |
E. Stockert, E. Jager, Y. T. Chen, M. J. Scanlan, I. Gout, J. Karbach, M. Arand, A. Knuth and L. J. Old, A survey of the humoral immune response of cancer patients to a panel of human tumor antigens, J. Exp. Med., 187 (1998), 1349-1354.doi: 10.1084/jem.187.8.1349. |
[32] |
Z. Szymanska, Analysis of immunotheray models in the context of cancer dynamics, Int. J. Appl. Math. Comput. Sci., 13 (2003), 407-418. |
[33] |
A. Tsygvintsev, S. Marino and D. E. Kirschner, A mathematical model of gene therapy for the treatment of cancer, in Mathematical Methods and Models in Biomedicine (eds. U. Ledzewicz, H. Schattler, A. Friedman and E. Kashdan), Springer New York, 2013, 367-385.doi: 10.1007/978-1-4614-4178-6_13. |
[34] |
M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol., 47 (2003), 270-294.doi: 10.1007/s00285-003-0211-0. |
[35] |
L. Zamai, C. Ponti, P. Mirandola, G. Gobbi, S. Papa, L. Galeotti, L. Cocco and M. Vitale, NK cells and cancer, J. Immunol., 178 (2007), 4011-4016. |