March  2014, 19(2): 589-606. doi: 10.3934/dcdsb.2014.19.589

Periodic unimodal Allee maps, the semigroup property and the $\lambda$-Ricker map with Allee effect

1. 

Department of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing, 401331, China

2. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, United States

Received  April 2013 Revised  October 2013 Published  February 2014

The $\lambda$-Ricker equation has, for certain values of the parameters, an unstable fixed point giving rise to the Allee effect, and an attracting fixed point, the carrying capacity. The $k$-periodic $\lambda$-Ricker equation is studied and parameter intervals are determined for which there exist a $k$-periodic Allee state and a $k$-periodic attracting state.
Citation: Yi Yang, Robert J. Sacker. Periodic unimodal Allee maps, the semigroup property and the $\lambda$-Ricker map with Allee effect. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 589-606. doi: 10.3934/dcdsb.2014.19.589
References:
[1]

L. Allen, J. Fagan, G. Hognas and H. Fagerholm, Population extinction in discrete-time stochastic population models with an Allee effect, J. Difference Eq. & Appl., 11 (2005), 273-293. doi: 10.1080/10236190412331335373.

[2]

R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, volume 11 of Fish and Fisheries Series, Chapman and Hall, London, 1957, reprinted, 1993.

[3]

J. M. Cushing, The Allee effect in age-structured population dynamics, In T. Hallam, L. Gross, and S. Levin, editors, Mathematical Ecology, pages 479-505. World Sci. Publ., Teaneck, NJ, 1988.

[4]

J. M. Cushing, Oscillations in age-structured population models with Allee effect, J. Comput. and Appl. Math., 52 (1994), 71-80. doi: 10.1016/0377-0427(94)90349-2.

[5]

J. M. Cushing and S. M. Henson, Global dynamics of some periodically forced, monotone difference equations, J. Difference Eq. & Appl., 7 (2001), 857-872. doi: 10.1080/10236190108808308.

[6]

J. M. Cushing and S. M. Henson, A periodically forced Beverton-Holt equation, J. Difference Eq. & Appl., 8 (2002), 1119-1120. doi: 10.1080/1023619021000053980.

[7]

H. G. Davis, C. M. Taylor, J. C. Civille and D. R. Strong, An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary, J. Ecology, 92 (2004), 321-327. doi: 10.1111/j.0022-0477.2004.00873.x.

[8]

B. Dennis, Allee effects: Population growth, critical density and the chance of extinction, Natural Resource Modeling, 3 (1989), 481-538.

[9]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics. Springer, New York, USA, third edition, 2005.

[10]

S. Elaydi and R. J. Sacker, Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing-Henson conjecture, In S. Elaydi, G. Ladas, B. Aulbach, and O. Dosly, editors, 8th Internat. Conf. on Difference Equations and Appl.(2003), Brno, Czech Republic, pages 113-126. Chapman and Hall, 2005. doi: 10.1201/9781420034905.

[11]

S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Eq. & Appl., 11 (2005), 337-346. doi: 10.1080/10236190412331335418.

[12]

S. Elaydi and R. J. Sacker, Periodic difference equations, population biology and the Cushing-Henson conjectures, Math. Biosciences, 201 (2006), 195-207. doi: 10.1016/j.mbs.2005.12.021.

[13]

S. Elaydi and R. J. Sacker, Population models with Allee effect, A new model, J. Biological Dynamics, 4 (2010), 397-408. doi: 10.1080/17513750903377434.

[14]

H. Eskola and K. Parvinen, On the mechanistic underpinning of discrete-time population models, Theor. Popul. Biol., 72 (2007), 41-51.

[15]

M. S. Fowler and G. D. Ruxton, Population dynamic consequences of Allee effects, J. Theor. Biol., 215 (2002), 39-46. doi: 10.1006/jtbi.2001.2486.

[16]

A. Friedman and A.-A. Yakubu, Fatal disease and demographic allee effect, population persistence and extinction, J. Biological Dynamics, 6 (2012), 495-508. doi: 10.1080/17513758.2011.630489.

[17]

G. R. J. Gaut, K. Goldring, F. Grogan, C. Haskell and R. J. Sacker, Difference equations with the Allee effect and the periodic sigmoid Beverton-Holt equation revisited, J. Biological Dynamics, 6 (2012), 1019-1033. doi: 10.1080/17513758.2012.719039.

[18]

A. J. Harry, C. M. Kent and V. L. Kocic, Global behavior of solutions of a periodically forced Sigmoid Beverton-Holt model, J. Biological Dynamics, 6 (2012), 212-234. doi: 10.1080/17513758.2011.552738.

[19]

S. R.-J. Jang, Allee effects in a discrete-time host-parasitoid model, J. Difference Eq. & Appl., 12 (2006), 165-181. doi: 10.1080/10236190500539238.

[20]

V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Difference Eq. and Appl., 11 (2005), 415-422. doi: 10.1080/10236190412331335463.

[21]

R. Kon, A note on attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 10 (2004), 791-793. doi: 10.1080/10236190410001703949.

[22]

R. Kon, Attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 11 (2005), 423-430. doi: 10.1080/10236190412331335472.

[23]

J. Li, B. Song and X. Wang, An extended discrete Ricker population model with Allee effects, J. Difference Eq. & Appl, 13 (2007), 309-321. doi: 10.1080/10236190601079191.

[24]

R. Luís, E. Elaydi and H. Oliveira, Nonautonomous periodic systems with Allee effects, J. Difference Eq. & Appl., 16 (2010), 1179-1196. doi: 10.1080/10236190902794951.

[25]

R. A. Myers, N. J. Barrowman, J. A. Hutchings and A. A. Rosenberg, Population dynamics of exploited fish stocks at low population levels, Science, 269 (1995), 1106-1108. doi: 10.1126/science.269.5227.1106.

[26]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, 2002, Springer, Berlin, 2010. doi: 10.1007/978-3-642-14258-1.

[27]

R. J. Sacker, A Note on periodic Ricker maps, J. Difference Eq. & Appl., 13 (2007), 89-92. doi: 10.1080/10236190601008752.

[28]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Pop. Biol., 64 (2003), 201-209. doi: 10.1016/S0040-5809(03)00072-8.

[29]

P. A. Stephens and W. J. Sutherland, Vertebrate mating systems, Allee effects and conservation, In M. Apollonio, M. Festa-Bianchet, and D. Mainardi, editors, Vertebrate mating systems, pages 186-213, Singapore, 2000. World Scientific Publishing. doi: 10.1142/9789812793584_0009.

[30]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect? Oikos, 87 (1999), 185-190. doi: 10.2307/3547011.

[31]

C. M. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908. doi: 10.1111/j.1461-0248.2005.00787.x.

[32]

A.-A. Yakubu, Allee effects in discrete-time SIUS epidemic models with infected newborns, J. Difference Eq. & Appl., 13 (2007), 341-356. doi: 10.1080/10236190601079076.

[33]

Y. Yang and R. J. Sacker, Resonance and attenuation in the $n$-periodic Beverton-Holt Equation, J. Difference Eq & Appl., 19 (2013), 1174-1191.

[34]

S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31. doi: 10.1016/j.tpb.2004.06.007.

show all references

References:
[1]

L. Allen, J. Fagan, G. Hognas and H. Fagerholm, Population extinction in discrete-time stochastic population models with an Allee effect, J. Difference Eq. & Appl., 11 (2005), 273-293. doi: 10.1080/10236190412331335373.

[2]

R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, volume 11 of Fish and Fisheries Series, Chapman and Hall, London, 1957, reprinted, 1993.

[3]

J. M. Cushing, The Allee effect in age-structured population dynamics, In T. Hallam, L. Gross, and S. Levin, editors, Mathematical Ecology, pages 479-505. World Sci. Publ., Teaneck, NJ, 1988.

[4]

J. M. Cushing, Oscillations in age-structured population models with Allee effect, J. Comput. and Appl. Math., 52 (1994), 71-80. doi: 10.1016/0377-0427(94)90349-2.

[5]

J. M. Cushing and S. M. Henson, Global dynamics of some periodically forced, monotone difference equations, J. Difference Eq. & Appl., 7 (2001), 857-872. doi: 10.1080/10236190108808308.

[6]

J. M. Cushing and S. M. Henson, A periodically forced Beverton-Holt equation, J. Difference Eq. & Appl., 8 (2002), 1119-1120. doi: 10.1080/1023619021000053980.

[7]

H. G. Davis, C. M. Taylor, J. C. Civille and D. R. Strong, An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary, J. Ecology, 92 (2004), 321-327. doi: 10.1111/j.0022-0477.2004.00873.x.

[8]

B. Dennis, Allee effects: Population growth, critical density and the chance of extinction, Natural Resource Modeling, 3 (1989), 481-538.

[9]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics. Springer, New York, USA, third edition, 2005.

[10]

S. Elaydi and R. J. Sacker, Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing-Henson conjecture, In S. Elaydi, G. Ladas, B. Aulbach, and O. Dosly, editors, 8th Internat. Conf. on Difference Equations and Appl.(2003), Brno, Czech Republic, pages 113-126. Chapman and Hall, 2005. doi: 10.1201/9781420034905.

[11]

S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Eq. & Appl., 11 (2005), 337-346. doi: 10.1080/10236190412331335418.

[12]

S. Elaydi and R. J. Sacker, Periodic difference equations, population biology and the Cushing-Henson conjectures, Math. Biosciences, 201 (2006), 195-207. doi: 10.1016/j.mbs.2005.12.021.

[13]

S. Elaydi and R. J. Sacker, Population models with Allee effect, A new model, J. Biological Dynamics, 4 (2010), 397-408. doi: 10.1080/17513750903377434.

[14]

H. Eskola and K. Parvinen, On the mechanistic underpinning of discrete-time population models, Theor. Popul. Biol., 72 (2007), 41-51.

[15]

M. S. Fowler and G. D. Ruxton, Population dynamic consequences of Allee effects, J. Theor. Biol., 215 (2002), 39-46. doi: 10.1006/jtbi.2001.2486.

[16]

A. Friedman and A.-A. Yakubu, Fatal disease and demographic allee effect, population persistence and extinction, J. Biological Dynamics, 6 (2012), 495-508. doi: 10.1080/17513758.2011.630489.

[17]

G. R. J. Gaut, K. Goldring, F. Grogan, C. Haskell and R. J. Sacker, Difference equations with the Allee effect and the periodic sigmoid Beverton-Holt equation revisited, J. Biological Dynamics, 6 (2012), 1019-1033. doi: 10.1080/17513758.2012.719039.

[18]

A. J. Harry, C. M. Kent and V. L. Kocic, Global behavior of solutions of a periodically forced Sigmoid Beverton-Holt model, J. Biological Dynamics, 6 (2012), 212-234. doi: 10.1080/17513758.2011.552738.

[19]

S. R.-J. Jang, Allee effects in a discrete-time host-parasitoid model, J. Difference Eq. & Appl., 12 (2006), 165-181. doi: 10.1080/10236190500539238.

[20]

V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Difference Eq. and Appl., 11 (2005), 415-422. doi: 10.1080/10236190412331335463.

[21]

R. Kon, A note on attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 10 (2004), 791-793. doi: 10.1080/10236190410001703949.

[22]

R. Kon, Attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 11 (2005), 423-430. doi: 10.1080/10236190412331335472.

[23]

J. Li, B. Song and X. Wang, An extended discrete Ricker population model with Allee effects, J. Difference Eq. & Appl, 13 (2007), 309-321. doi: 10.1080/10236190601079191.

[24]

R. Luís, E. Elaydi and H. Oliveira, Nonautonomous periodic systems with Allee effects, J. Difference Eq. & Appl., 16 (2010), 1179-1196. doi: 10.1080/10236190902794951.

[25]

R. A. Myers, N. J. Barrowman, J. A. Hutchings and A. A. Rosenberg, Population dynamics of exploited fish stocks at low population levels, Science, 269 (1995), 1106-1108. doi: 10.1126/science.269.5227.1106.

[26]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, 2002, Springer, Berlin, 2010. doi: 10.1007/978-3-642-14258-1.

[27]

R. J. Sacker, A Note on periodic Ricker maps, J. Difference Eq. & Appl., 13 (2007), 89-92. doi: 10.1080/10236190601008752.

[28]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Pop. Biol., 64 (2003), 201-209. doi: 10.1016/S0040-5809(03)00072-8.

[29]

P. A. Stephens and W. J. Sutherland, Vertebrate mating systems, Allee effects and conservation, In M. Apollonio, M. Festa-Bianchet, and D. Mainardi, editors, Vertebrate mating systems, pages 186-213, Singapore, 2000. World Scientific Publishing. doi: 10.1142/9789812793584_0009.

[30]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect? Oikos, 87 (1999), 185-190. doi: 10.2307/3547011.

[31]

C. M. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908. doi: 10.1111/j.1461-0248.2005.00787.x.

[32]

A.-A. Yakubu, Allee effects in discrete-time SIUS epidemic models with infected newborns, J. Difference Eq. & Appl., 13 (2007), 341-356. doi: 10.1080/10236190601079076.

[33]

Y. Yang and R. J. Sacker, Resonance and attenuation in the $n$-periodic Beverton-Holt Equation, J. Difference Eq & Appl., 19 (2013), 1174-1191.

[34]

S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31. doi: 10.1016/j.tpb.2004.06.007.

[1]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[2]

Xiaoyuan Chang, Junping Shi. Bistable and oscillatory dynamics of Nicholson's blowflies equation with Allee effect. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4551-4572. doi: 10.3934/dcdsb.2021242

[3]

Chuangxia Huang, Xiaojin Guo, Jinde Cao, Ardak Kashkynbayev. Bistable dynamics on a tick population equation incorporating Allee effect and two different time-varying delays. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022122

[4]

Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313

[5]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[6]

Karel Hasík, Jana Kopfová, Petra Nábělková, Sergei Trofimchuk. On pushed wavefronts of monostable equation with unimodal delayed reaction. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5979-6000. doi: 10.3934/dcds.2021103

[7]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[8]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[9]

Mikhail Lyubich. Forty years of unimodal dynamics: On the occasion of Artur Avila winning the Brin Prize. Journal of Modern Dynamics, 2012, 6 (2) : 183-203. doi: 10.3934/jmd.2012.6.183

[10]

Sophia R.-J. Jang. Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences & Engineering, 2010, 7 (1) : 67-81. doi: 10.3934/mbe.2010.7.67

[11]

J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha. Strong and weak Allee effects and chaotic dynamics in Richards' growths. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2397-2425. doi: 10.3934/dcdsb.2013.18.2397

[12]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[13]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005

[14]

Yuri N. Fedorov, Dmitry V. Zenkov. Dynamics of the discrete Chaplygin sleigh. Conference Publications, 2005, 2005 (Special) : 258-267. doi: 10.3934/proc.2005.2005.258

[15]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[16]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365

[17]

Xiujuan Wang, Mingshu Peng. Rich dynamics in some generalized difference equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3205-3212. doi: 10.3934/dcdss.2020191

[18]

S. R.-J. Jang. Allee effects in a discrete-time host-parasitoid model with stage structure in the host. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 145-159. doi: 10.3934/dcdsb.2007.8.145

[19]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[20]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]