May  2014, 19(3): 651-677. doi: 10.3934/dcdsb.2014.19.651

Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain

1. 

Unité de recherche: Ondelettes et Fractals, Faculté des Sciences de Monastir, Av. de l'environnement, 5000 Monastir

2. 

LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex

Received  October 2013 Revised  November 2013 Published  February 2014

We study the long-time behavior of the solutions to a nonlinear damped driven Schrödinger type equation on a strip. We prove that this behavior is described by a regular compact global attractor.
Citation: Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651
References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain,, Communications in Pure and Applied Analysis, 10 (2011), 1629.  doi: 10.3934/cpaa.2011.10.1629.  Google Scholar

[2]

B. Alouini, Étude De L'équation De Bose-Einstein Dans Un Canal,, Ph.D thesis, (2013).   Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, Discrete Continuous Dynam. Systems - A, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, Proc. Indian. Acad. Sci. (Math. Sci.), 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: Observation of limited condensate number,, Phys. Rev. Lett., 78 (1997), 985.  doi: 10.1103/PhysRevLett.78.985.  Google Scholar

[6]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential,, Annales Henri Poincare, 3 (2002), 757.  doi: 10.1007/s00023-002-8635-4.  Google Scholar

[7]

C. M. Carracedo and M. S. Alix, The Theory of Fractional Powers of Operators,, North-Holland Mathematics Studies, 187 (2001).   Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[9]

G. Chen and J. Zhang, Remarks on global existence for the supercritical nonlinear Schrödinger equation with a harmonic potential,, J. Math. Anal. Appl., 320 (2006), 591.  doi: 10.1016/j.jmaa.2005.07.008.  Google Scholar

[10]

G. B. Folland, Fourier Analysis and Its Applications,, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, (1992).   Google Scholar

[11]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential,, Nonlinear Analysis, 72 (2010), 4397.  doi: 10.1016/j.na.2010.02.013.  Google Scholar

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $\mathbbR^2$,, Advances in Differential Equations, 3 (1998), 337.   Google Scholar

[13]

M. Haase, The Functional Calculus For Sectoriel Operators,, Operator Theory, 169 (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

E. Harboure, L. de Rosa, C. Segovia et J. L. Torrea, $\mathbfL^p$-Dimension free boundedness for Riesz transforms associated to Hermite functions,, Math. Ann., 328 (2004), 653.  doi: 10.1007/s00208-003-0501-2.  Google Scholar

[15]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.I.Anormalous dispersion,, Applied Physics Lettres, 23 (1973), 14.  doi: 10.1063/1.1654836.  Google Scholar

[16]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear schrödinger equations in $\mathbbR^N, N\leq 3$,, NoDEA, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[17]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential,, Appl. Math. Comput., 177 (2006), 482.  doi: 10.1016/j.amc.2005.11.024.  Google Scholar

[18]

Y. Meyer and R. Coifman, Wavelets: Calderòn-Zygmund and Multilinear Operators,, Cambridge Studies in Advanced Mathematics, 48 (1997).   Google Scholar

[19]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation,, Physica D: Nonlinear phenomena, 21 (1986), 381.  doi: 10.1016/0167-2789(86)90012-6.  Google Scholar

[20]

H. Pollard, The mean convergence of orthogonal series II,, Trans. Amer. Math. Soc., 63 (1948), 355.  doi: 10.1090/S0002-9947-1948-0023941-X.  Google Scholar

[21]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator,, Nonlinearity, 13 (2000), 675.  doi: 10.1088/0951-7715/13/3/310.  Google Scholar

[22]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces,, Math. Z., 203 (1990), 429.  doi: 10.1007/BF02570748.  Google Scholar

[23]

J. Prüss and G. Simonett, $H^{\infty}-$calculus for the sum of non-commuting operators,, Transactions Of The American Mathematical Society, 359 (2007), 3549.  doi: 10.1090/S0002-9947-07-04291-2.  Google Scholar

[24]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbbR^2$,, J. Funct. Anal., 219 (2005), 340.  doi: 10.1016/j.jfa.2004.06.013.  Google Scholar

[25]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,, Princeton University Press, 43 (1993).   Google Scholar

[26]

K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expensions with weigths., Journal of Functional Analysis, 202 (2003), 443.  doi: 10.1016/S0022-1236(03)00083-1.  Google Scholar

[27]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics,, Springer applied mathmatical sciences, 68 (1997).   Google Scholar

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland Mathematical Library, 18 (1978).   Google Scholar

[29]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors,, Physica D: Nonlinear Phenomena, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

show all references

References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain,, Communications in Pure and Applied Analysis, 10 (2011), 1629.  doi: 10.3934/cpaa.2011.10.1629.  Google Scholar

[2]

B. Alouini, Étude De L'équation De Bose-Einstein Dans Un Canal,, Ph.D thesis, (2013).   Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, Discrete Continuous Dynam. Systems - A, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,, Proc. Indian. Acad. Sci. (Math. Sci.), 116 (2006), 337.  doi: 10.1007/BF02829750.  Google Scholar

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: Observation of limited condensate number,, Phys. Rev. Lett., 78 (1997), 985.  doi: 10.1103/PhysRevLett.78.985.  Google Scholar

[6]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential,, Annales Henri Poincare, 3 (2002), 757.  doi: 10.1007/s00023-002-8635-4.  Google Scholar

[7]

C. M. Carracedo and M. S. Alix, The Theory of Fractional Powers of Operators,, North-Holland Mathematics Studies, 187 (2001).   Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[9]

G. Chen and J. Zhang, Remarks on global existence for the supercritical nonlinear Schrödinger equation with a harmonic potential,, J. Math. Anal. Appl., 320 (2006), 591.  doi: 10.1016/j.jmaa.2005.07.008.  Google Scholar

[10]

G. B. Folland, Fourier Analysis and Its Applications,, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, (1992).   Google Scholar

[11]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential,, Nonlinear Analysis, 72 (2010), 4397.  doi: 10.1016/j.na.2010.02.013.  Google Scholar

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $\mathbbR^2$,, Advances in Differential Equations, 3 (1998), 337.   Google Scholar

[13]

M. Haase, The Functional Calculus For Sectoriel Operators,, Operator Theory, 169 (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

E. Harboure, L. de Rosa, C. Segovia et J. L. Torrea, $\mathbfL^p$-Dimension free boundedness for Riesz transforms associated to Hermite functions,, Math. Ann., 328 (2004), 653.  doi: 10.1007/s00208-003-0501-2.  Google Scholar

[15]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.I.Anormalous dispersion,, Applied Physics Lettres, 23 (1973), 14.  doi: 10.1063/1.1654836.  Google Scholar

[16]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear schrödinger equations in $\mathbbR^N, N\leq 3$,, NoDEA, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[17]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential,, Appl. Math. Comput., 177 (2006), 482.  doi: 10.1016/j.amc.2005.11.024.  Google Scholar

[18]

Y. Meyer and R. Coifman, Wavelets: Calderòn-Zygmund and Multilinear Operators,, Cambridge Studies in Advanced Mathematics, 48 (1997).   Google Scholar

[19]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation,, Physica D: Nonlinear phenomena, 21 (1986), 381.  doi: 10.1016/0167-2789(86)90012-6.  Google Scholar

[20]

H. Pollard, The mean convergence of orthogonal series II,, Trans. Amer. Math. Soc., 63 (1948), 355.  doi: 10.1090/S0002-9947-1948-0023941-X.  Google Scholar

[21]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator,, Nonlinearity, 13 (2000), 675.  doi: 10.1088/0951-7715/13/3/310.  Google Scholar

[22]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces,, Math. Z., 203 (1990), 429.  doi: 10.1007/BF02570748.  Google Scholar

[23]

J. Prüss and G. Simonett, $H^{\infty}-$calculus for the sum of non-commuting operators,, Transactions Of The American Mathematical Society, 359 (2007), 3549.  doi: 10.1090/S0002-9947-07-04291-2.  Google Scholar

[24]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbbR^2$,, J. Funct. Anal., 219 (2005), 340.  doi: 10.1016/j.jfa.2004.06.013.  Google Scholar

[25]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,, Princeton University Press, 43 (1993).   Google Scholar

[26]

K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expensions with weigths., Journal of Functional Analysis, 202 (2003), 443.  doi: 10.1016/S0022-1236(03)00083-1.  Google Scholar

[27]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics,, Springer applied mathmatical sciences, 68 (1997).   Google Scholar

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland Mathematical Library, 18 (1978).   Google Scholar

[29]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors,, Physica D: Nonlinear Phenomena, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[1]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[2]

Vladimir S. Gerdjikov. Bose-Einstein condensates and spectral properties of multicomponent nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1181-1197. doi: 10.3934/dcdss.2011.4.1181

[3]

Kui Li, Zhitao Zhang. A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 851-860. doi: 10.3934/dcds.2016.36.851

[4]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[5]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[6]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[7]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic & Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[8]

Florian Méhats, Christof Sparber. Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5097-5118. doi: 10.3934/dcds.2016021

[9]

P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199

[10]

Weizhu Bao, Loïc Le Treust, Florian Méhats. Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime. Kinetic & Related Models, 2017, 10 (3) : 553-571. doi: 10.3934/krm.2017022

[11]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[12]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[13]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[14]

Vadym Vekslerchik, Víctor M. Pérez-García. Exact solution of the two-mode model of multicomponent Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 179-192. doi: 10.3934/dcdsb.2003.3.179

[15]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[16]

Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

[17]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[18]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[19]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[20]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]