May  2014, 19(3): 651-677. doi: 10.3934/dcdsb.2014.19.651

Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain

1. 

Unité de recherche: Ondelettes et Fractals, Faculté des Sciences de Monastir, Av. de l'environnement, 5000 Monastir

2. 

LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex

Received  October 2013 Revised  November 2013 Published  February 2014

We study the long-time behavior of the solutions to a nonlinear damped driven Schrödinger type equation on a strip. We prove that this behavior is described by a regular compact global attractor.
Citation: Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651
References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain, Communications in Pure and Applied Analysis, 10 (2011), 1629-1643. doi: 10.3934/cpaa.2011.10.1629.

[2]

B. Alouini, Étude De L'équation De Bose-Einstein Dans Un Canal, Ph.D thesis, Monastir University in Monastir, 2013.

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31.

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian. Acad. Sci. (Math. Sci.), 116 (2006), 337-360. doi: 10.1007/BF02829750.

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: Observation of limited condensate number, Phys. Rev. Lett., 78 (1997), 985-989. doi: 10.1103/PhysRevLett.78.985.

[6]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential, Annales Henri Poincare, 3 (2002), 757-772. doi: 10.1007/s00023-002-8635-4.

[7]

C. M. Carracedo and M. S. Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, vol. 187, 2001.

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[9]

G. Chen and J. Zhang, Remarks on global existence for the supercritical nonlinear Schrödinger equation with a harmonic potential, J. Math. Anal. Appl., 320 (2006), 591-598. doi: 10.1016/j.jmaa.2005.07.008.

[10]

G. B. Folland, Fourier Analysis and Its Applications, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992.

[11]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential, Nonlinear Analysis, 72 (2010), 4397-4406. doi: 10.1016/j.na.2010.02.013.

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $\mathbbR^2$, Advances in Differential Equations, 3 (1998), 337-360.

[13]

M. Haase, The Functional Calculus For Sectoriel Operators, Operator Theory, Advances and Applications, Birkhäuser Verlag, Basel-Boston-Berlin, 169, 2006. doi: 10.1007/3-7643-7698-8.

[14]

E. Harboure, L. de Rosa, C. Segovia et J. L. Torrea, $\mathbfL^p$-Dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann., 328 (2004), 653-682. doi: 10.1007/s00208-003-0501-2.

[15]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.I.Anormalous dispersion, Applied Physics Lettres, 23 (1973), 14-24. doi: 10.1063/1.1654836.

[16]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear schrödinger equations in $\mathbbR^N, N\leq 3$, NoDEA, 2 (1995), 357-369. doi: 10.1007/BF01261181.

[17]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential, Appl. Math. Comput., 177 (2006), 482-487. doi: 10.1016/j.amc.2005.11.024.

[18]

Y. Meyer and R. Coifman, Wavelets: Calderòn-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics, 48, Cambridge University Press, Cambridge, 1997.

[19]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation, Physica D: Nonlinear phenomena, 21 (1986), 381-393. doi: 10.1016/0167-2789(86)90012-6.

[20]

H. Pollard, The mean convergence of orthogonal series II, Trans. Amer. Math. Soc., 63 (1948), 355-367. Available from: http://www.ams.org/journals/tran/1948-063-02/S0002-9947-1948-0023941-X/S0002-9947-1948-0023941-X.pdf doi: 10.1090/S0002-9947-1948-0023941-X.

[21]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator, Nonlinearity, 13 (2000), 675-698. doi: 10.1088/0951-7715/13/3/310.

[22]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z., 203 (1990), 429-452. doi: 10.1007/BF02570748.

[23]

J. Prüss and G. Simonett, $H^{\infty}-$calculus for the sum of non-commuting operators, Transactions Of The American Mathematical Society, 359 (2007), 3549-3565. Available from: http://www.math.vanderbilt.edu/ simonett/preprints/non-commuting.pdf. doi: 10.1090/S0002-9947-07-04291-2.

[24]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbbR^2$, J. Funct. Anal., 219 (2005), 340-367. doi: 10.1016/j.jfa.2004.06.013.

[25]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 43, Princeton, New Jersey, 1993.

[26]

K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expensions with weigths. Journal of Functional Analysis, 202 (2003), 443-472. doi: 10.1016/S0022-1236(03)00083-1.

[27]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics, Springer applied mathmatical sciences, 68, Springer-Verlag, New York, 1997.

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, 1978.

[29]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D: Nonlinear Phenomena, 88 (1995), 167-175. doi: 10.1016/0167-2789(95)00196-B.

show all references

References:
[1]

B. Alouini, Long-time behavior of a Bose-Einstein equation in a two dimensional thin domain, Communications in Pure and Applied Analysis, 10 (2011), 1629-1643. doi: 10.3934/cpaa.2011.10.1629.

[2]

B. Alouini, Étude De L'équation De Bose-Einstein Dans Un Canal, Ph.D thesis, Monastir University in Monastir, 2013.

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31.

[4]

B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian. Acad. Sci. (Math. Sci.), 116 (2006), 337-360. doi: 10.1007/BF02829750.

[5]

C. C. Bradlay, C. A. Sackett and R. G. Hulet, Bose-Einstein condensation of lithium: Observation of limited condensate number, Phys. Rev. Lett., 78 (1997), 985-989. doi: 10.1103/PhysRevLett.78.985.

[6]

R. Carles, Remarks on nonlinear Schrödinger equation with harmonic potential, Annales Henri Poincare, 3 (2002), 757-772. doi: 10.1007/s00023-002-8635-4.

[7]

C. M. Carracedo and M. S. Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, vol. 187, 2001.

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[9]

G. Chen and J. Zhang, Remarks on global existence for the supercritical nonlinear Schrödinger equation with a harmonic potential, J. Math. Anal. Appl., 320 (2006), 591-598. doi: 10.1016/j.jmaa.2005.07.008.

[10]

G. B. Folland, Fourier Analysis and Its Applications, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992.

[11]

O. Goubet and L. Legry, Finite dimensional global attractor for a parametric nonlinear Schrödinger system with a trapping potential, Nonlinear Analysis, 72 (2010), 4397-4406. doi: 10.1016/j.na.2010.02.013.

[12]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $\mathbbR^2$, Advances in Differential Equations, 3 (1998), 337-360.

[13]

M. Haase, The Functional Calculus For Sectoriel Operators, Operator Theory, Advances and Applications, Birkhäuser Verlag, Basel-Boston-Berlin, 169, 2006. doi: 10.1007/3-7643-7698-8.

[14]

E. Harboure, L. de Rosa, C. Segovia et J. L. Torrea, $\mathbfL^p$-Dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann., 328 (2004), 653-682. doi: 10.1007/s00208-003-0501-2.

[15]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.I.Anormalous dispersion, Applied Physics Lettres, 23 (1973), 14-24. doi: 10.1063/1.1654836.

[16]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear schrödinger equations in $\mathbbR^N, N\leq 3$, NoDEA, 2 (1995), 357-369. doi: 10.1007/BF01261181.

[17]

Q. Liu, Y. Zhou, J. Zhang and W. Zhang, Sharp condition of global existence for nonlinear Schrödinger equation with a harmonic potential, Appl. Math. Comput., 177 (2006), 482-487. doi: 10.1016/j.amc.2005.11.024.

[18]

Y. Meyer and R. Coifman, Wavelets: Calderòn-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics, 48, Cambridge University Press, Cambridge, 1997.

[19]

K. Nosaki and N. Bekki, Low-Dimentional chaos in a driven damped nonlinear Schrödinger equation, Physica D: Nonlinear phenomena, 21 (1986), 381-393. doi: 10.1016/0167-2789(86)90012-6.

[20]

H. Pollard, The mean convergence of orthogonal series II, Trans. Amer. Math. Soc., 63 (1948), 355-367. Available from: http://www.ams.org/journals/tran/1948-063-02/S0002-9947-1948-0023941-X/S0002-9947-1948-0023941-X.pdf doi: 10.1090/S0002-9947-1948-0023941-X.

[21]

K. Promislow and J. N. Kutz, Bifurcation and asymptotic stability in the large detuning limit of optical parametric oscillator, Nonlinearity, 13 (2000), 675-698. doi: 10.1088/0951-7715/13/3/310.

[22]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z., 203 (1990), 429-452. doi: 10.1007/BF02570748.

[23]

J. Prüss and G. Simonett, $H^{\infty}-$calculus for the sum of non-commuting operators, Transactions Of The American Mathematical Society, 359 (2007), 3549-3565. Available from: http://www.math.vanderbilt.edu/ simonett/preprints/non-commuting.pdf. doi: 10.1090/S0002-9947-07-04291-2.

[24]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbbR^2$, J. Funct. Anal., 219 (2005), 340-367. doi: 10.1016/j.jfa.2004.06.013.

[25]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 43, Princeton, New Jersey, 1993.

[26]

K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expensions with weigths. Journal of Functional Analysis, 202 (2003), 443-472. doi: 10.1016/S0022-1236(03)00083-1.

[27]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics, Springer applied mathmatical sciences, 68, Springer-Verlag, New York, 1997.

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, 1978.

[29]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D: Nonlinear Phenomena, 88 (1995), 167-175. doi: 10.1016/0167-2789(95)00196-B.

[1]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[2]

Vladimir S. Gerdjikov. Bose-Einstein condensates and spectral properties of multicomponent nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1181-1197. doi: 10.3934/dcdss.2011.4.1181

[3]

Kui Li, Zhitao Zhang. A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 851-860. doi: 10.3934/dcds.2016.36.851

[4]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[5]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[6]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[7]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[8]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[9]

Florian Méhats, Christof Sparber. Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5097-5118. doi: 10.3934/dcds.2016021

[10]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic and Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[11]

P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199

[12]

Weizhu Bao, Loïc Le Treust, Florian Méhats. Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime. Kinetic and Related Models, 2017, 10 (3) : 553-571. doi: 10.3934/krm.2017022

[13]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic and Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[14]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[15]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[16]

Vadym Vekslerchik, Víctor M. Pérez-García. Exact solution of the two-mode model of multicomponent Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 179-192. doi: 10.3934/dcdsb.2003.3.179

[17]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[18]

Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239

[19]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[20]

Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]