Citation: |
[1] |
E. Ammelt, Y. A. Astrov and H.-G. Purwins, Hexagon structures in a two-dimensional dc-driven gas discharge system, Physical Review E, 58 (1988), 7109-7117.doi: 10.1103/PhysRevE.58.7109. |
[2] |
C. D. Bain, G. D. Burnett-Hall and R. R. Montgomerie, Rapid motion of liquid drops, Nature, 372 (1994), 414-415.doi: 10.1038/372414a0. |
[3] |
Y.-Y. Chen, J.-S. Guo and H. Ninomiya, Existence and uniqueness of rigidly rotating spiral waves by a wave front interaction model, Physica D: Nonlinear Phenomena, 241 (2012), 1758-1766.doi: 10.1016/j.physd.2012.08.004. |
[4] |
L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991), 635-681. |
[5] |
J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagating wave segments in wave front interaction model, Physica D: Nonlinear Phenomena, 239 (2010), 230-239.doi: 10.1016/j.physd.2009.11.001. |
[6] |
J.-S. Guo, H. Ninomiya and C.-C. Wu, Existence of a rotating wave pattern in a disk for a wave front interaction model, Comm. Pure Applied Anal., 12 (2013), 1049-1063.doi: 10.3934/cpaa.2013.12.1049. |
[7] |
P. Hartman, Ordinary Differential Equations, SIAM, Philadelphia, 2002.doi: 10.1137/1.9780898719222. |
[8] |
A. Hagberg and E. Meron, Pattern formation in non-gradient reaction-diffusion systems: The effects of front bifurcations, Nonlinearity, 7 (1994), 805-835.doi: 10.1088/0951-7715/7/3/006. |
[9] |
K. Krischer and A. Mikhailov, Bifurcation to traveling spots in reaction-diffusion systems, Physical Review Letters, 73 (1994), 3165-3168.doi: 10.1103/PhysRevLett.73.3165. |
[10] |
W. F. Loomis, The Development of Dioctyostelium Discoideum, Academic Press, New York, 1982. |
[11] |
E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Experimental and theoretical studies of feedback stabilization of propagating wave segments, Faraday Discuss, 120 (2001), 383-394.doi: 10.1039/b103431f. |
[12] |
E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Feedback stabilization of unstable propagating waves, Phys. Review E., 65 (2002), 065602.doi: 10.1103/PhysRevE.65.065602. |
[13] |
M. Or-Guil, M. Bode, C. P. Schenk and H.-G. Purwins, Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation, Phys. Review E., 57 (1998), 6432-6437.doi: 10.1103/PhysRevE.57.6432. |
[14] |
T. Ohta, M. Mimura and R. Kobayashi, Higher-dimensional localized patterns in excitable media, Physica D, 34 (1989), 115-144. |
[15] |
L. M. Pismen, Nonlocal boundary dynamics of traveling spots in a reaction-diffusion system, Physical Review Letters, 86 (2001), 548-551.doi: 10.1103/PhysRevLett.86.548. |
[16] |
J. Rinzel and J. B. Keller, Traveling wave solutions of a nerve conduction equation, Biophysical Journal, 13 (1973), 1313-1337. |
[17] |
C. P. Schenk, M. Or-Guil, M. Bode and H.-G. Purwins, Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains, Physical Review Letters, 78 (1997), 3781-3784.doi: 10.1103/PhysRevLett.78.3781. |
[18] |
H. Willebrand, T. Hünteler, F.-J. Niedernostheide, R. Dohmen and H.-G. Purwins, Periodic and turbulent behavior of solitary structures in distributed active media, Phys. Rev. A, 45 (1992), 8766-8775.doi: 10.1103/PhysRevA.45.8766. |
[19] |
V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagating wave segments, Phys. Review Letters, 94 (2005), 068302.doi: 10.1103/PhysRevLett.94.068302. |