Advanced Search
Article Contents
Article Contents

Traveling spots and traveling fingers in singular limit problems of reaction-diffusion systems

Abstract Related Papers Cited by
  • In this study, we consider the traveling spots that were observed in the photosensitive Belousov-Zhabotinsky reaction experiment conducted by Mihailuk et al. in 2001. First, we introduce the interface equation by the singular limit analysis of a FitzHugh--Nagumo-type reaction-diffusion system. Then, we obtain the profile of the support of the solution. Next, we prove the uniqueness of the traveling spot by studying ordinary differential equations that describe its front and back. In addition, we provide an upper bound for the width of the spot. Furthermore, we compare the singular limit problem with the wave front interaction model proposed by Zykov and Showalter in 2005 and obtain traveling fingers.
    Mathematics Subject Classification: Primary: 35K57, 35C07; Secondary: 35R35.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Ammelt, Y. A. Astrov and H.-G. Purwins, Hexagon structures in a two-dimensional dc-driven gas discharge system, Physical Review E, 58 (1988), 7109-7117.doi: 10.1103/PhysRevE.58.7109.


    C. D. Bain, G. D. Burnett-Hall and R. R. Montgomerie, Rapid motion of liquid drops, Nature, 372 (1994), 414-415.doi: 10.1038/372414a0.


    Y.-Y. Chen, J.-S. Guo and H. Ninomiya, Existence and uniqueness of rigidly rotating spiral waves by a wave front interaction model, Physica D: Nonlinear Phenomena, 241 (2012), 1758-1766.doi: 10.1016/j.physd.2012.08.004.


    L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991), 635-681.


    J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagating wave segments in wave front interaction model, Physica D: Nonlinear Phenomena, 239 (2010), 230-239.doi: 10.1016/j.physd.2009.11.001.


    J.-S. Guo, H. Ninomiya and C.-C. Wu, Existence of a rotating wave pattern in a disk for a wave front interaction model, Comm. Pure Applied Anal., 12 (2013), 1049-1063.doi: 10.3934/cpaa.2013.12.1049.


    P. Hartman, Ordinary Differential Equations, SIAM, Philadelphia, 2002.doi: 10.1137/1.9780898719222.


    A. Hagberg and E. Meron, Pattern formation in non-gradient reaction-diffusion systems: The effects of front bifurcations, Nonlinearity, 7 (1994), 805-835.doi: 10.1088/0951-7715/7/3/006.


    K. Krischer and A. Mikhailov, Bifurcation to traveling spots in reaction-diffusion systems, Physical Review Letters, 73 (1994), 3165-3168.doi: 10.1103/PhysRevLett.73.3165.


    W. F. Loomis, The Development of Dioctyostelium Discoideum, Academic Press, New York, 1982.


    E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Experimental and theoretical studies of feedback stabilization of propagating wave segments, Faraday Discuss, 120 (2001), 383-394.doi: 10.1039/b103431f.


    E. Mihaliuk, T. Sakurai, F. Chirila and K. Showalter, Feedback stabilization of unstable propagating waves, Phys. Review E., 65 (2002), 065602.doi: 10.1103/PhysRevE.65.065602.


    M. Or-Guil, M. Bode, C. P. Schenk and H.-G. Purwins, Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation, Phys. Review E., 57 (1998), 6432-6437.doi: 10.1103/PhysRevE.57.6432.


    T. Ohta, M. Mimura and R. Kobayashi, Higher-dimensional localized patterns in excitable media, Physica D, 34 (1989), 115-144.


    L. M. Pismen, Nonlocal boundary dynamics of traveling spots in a reaction-diffusion system, Physical Review Letters, 86 (2001), 548-551.doi: 10.1103/PhysRevLett.86.548.


    J. Rinzel and J. B. Keller, Traveling wave solutions of a nerve conduction equation, Biophysical Journal, 13 (1973), 1313-1337.


    C. P. Schenk, M. Or-Guil, M. Bode and H.-G. Purwins, Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains, Physical Review Letters, 78 (1997), 3781-3784.doi: 10.1103/PhysRevLett.78.3781.


    H. Willebrand, T. Hünteler, F.-J. Niedernostheide, R. Dohmen and H.-G. Purwins, Periodic and turbulent behavior of solitary structures in distributed active media, Phys. Rev. A, 45 (1992), 8766-8775.doi: 10.1103/PhysRevA.45.8766.


    V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagating wave segments, Phys. Review Letters, 94 (2005), 068302.doi: 10.1103/PhysRevLett.94.068302.

  • 加载中

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint