-
Previous Article
Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model
- DCDS-B Home
- This Issue
-
Next Article
Global stability for a heroin model with two distributed delays
Analysis of a CD4$^+$ T cell viral infection model with a class of saturated infection rate
1. | Department of Applied Mathematics, University of Science and Technology Beijing, Beijing, 100083, China, China, China |
2. | Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 |
References:
[1] |
S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad.,, Sci. USA., 94 (1997), 6971. Google Scholar |
[2] |
B. Buonomo and C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells,, J. Math. Anal. Appl., 385 (2012), 709.
doi: 10.1016/j.jmaa.2011.07.006. |
[3] |
D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Dose effects and density- dependent regulation of two microparasites of Daphnia magna,, Oecologia, 122 (2000), 200.
doi: 10.1007/PL00008847. |
[4] |
D. Ho, A. Neumann, A. Perelson, W. Chen, J. Leonard and M. Markowitz, Rapid turnover of plasma virions and CD4+ lymphocytes in HIV-1 infection,, Nature, 373 (1995), 123.
doi: 10.1038/373123a0. |
[5] |
D. Kirschner, Using mathematics to understand HIV immune dynamics,, Notices Amer. Math. Soc., 43 (1996), 191.
|
[6] |
A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models,, Appl. Math. Lett., 15 (2002), 955.
doi: 10.1016/S0893-9659(02)00069-1. |
[7] |
M. Y. Li, H. L. Smith and L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission,, SIAM J. Math. Anal., 62 (2001), 58.
doi: 10.1137/S0036139999359860. |
[8] |
C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, J. Math. Anal. Appl., 338 (2008), 518.
doi: 10.1016/j.jmaa.2007.05.012. |
[9] |
M. Nowak, R. Anderson, M. Boerlijst, S. Bonhoeffer, R. May and A. McMichael, HIV-1 evolution and disease progression,, Science, 274 (1996), 1008.
doi: 10.1126/science.274.5289.1008. |
[10] |
M. Nowak, S. Bonhoeffer, G. Shaw and R. May, Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations,, J. Theoret. Biol., 184 (1997), 203.
doi: 10.1006/jtbi.1996.0307. |
[11] |
M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).
|
[12] |
A. S. Perelson, Modelling viral and immune system dynamics,, Nat. Rev. Immunol, 2 (2002), 28.
doi: 10.1038/nri700. |
[13] |
A. Perelson, D. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells,, Math. Biosci., 114 (1993), 81.
doi: 10.1016/0025-5564(93)90043-A. |
[14] |
A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.
doi: 10.1137/S0036144598335107. |
[15] |
A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.
doi: 10.1126/science.271.5255.1582. |
[16] |
R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology,, Proc. R. Soc. Lond. B., 269 (2002), 271.
doi: 10.1098/rspb.2001.1816. |
[17] |
L. Rong, M. A. Gilchrist, Z. Feng and A. S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility,, J. Theoret. Biol., 247 (2007), 804.
doi: 10.1016/j.jtbi.2007.04.014. |
[18] |
X. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics,, J. Math. Anal. Appl., 329 (2007), 281.
doi: 10.1016/j.jmaa.2006.06.064. |
[19] |
J. Tumwiine, J. Y. T. Mugisha and L. S. Luboobi, A host-vector model for malaria with infective immigrants,, J. Math. Anal. Appl., 361 (2010), 139.
doi: 10.1016/j.jmaa.2009.09.005. |
[20] |
C. Vargas De León, Constructions of Lyapunov functions for classic SIS, SIR and SIRS epidemic models with variable population size,, Foro-Red-Mat: Revista Electrónica de Contenido Matemático, 26 (2009). Google Scholar |
[21] |
L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells,, Math. Biosci., 200 (2006), 44.
doi: 10.1016/j.mbs.2005.12.026. |
show all references
References:
[1] |
S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad.,, Sci. USA., 94 (1997), 6971. Google Scholar |
[2] |
B. Buonomo and C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells,, J. Math. Anal. Appl., 385 (2012), 709.
doi: 10.1016/j.jmaa.2011.07.006. |
[3] |
D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Dose effects and density- dependent regulation of two microparasites of Daphnia magna,, Oecologia, 122 (2000), 200.
doi: 10.1007/PL00008847. |
[4] |
D. Ho, A. Neumann, A. Perelson, W. Chen, J. Leonard and M. Markowitz, Rapid turnover of plasma virions and CD4+ lymphocytes in HIV-1 infection,, Nature, 373 (1995), 123.
doi: 10.1038/373123a0. |
[5] |
D. Kirschner, Using mathematics to understand HIV immune dynamics,, Notices Amer. Math. Soc., 43 (1996), 191.
|
[6] |
A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models,, Appl. Math. Lett., 15 (2002), 955.
doi: 10.1016/S0893-9659(02)00069-1. |
[7] |
M. Y. Li, H. L. Smith and L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission,, SIAM J. Math. Anal., 62 (2001), 58.
doi: 10.1137/S0036139999359860. |
[8] |
C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, J. Math. Anal. Appl., 338 (2008), 518.
doi: 10.1016/j.jmaa.2007.05.012. |
[9] |
M. Nowak, R. Anderson, M. Boerlijst, S. Bonhoeffer, R. May and A. McMichael, HIV-1 evolution and disease progression,, Science, 274 (1996), 1008.
doi: 10.1126/science.274.5289.1008. |
[10] |
M. Nowak, S. Bonhoeffer, G. Shaw and R. May, Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations,, J. Theoret. Biol., 184 (1997), 203.
doi: 10.1006/jtbi.1996.0307. |
[11] |
M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).
|
[12] |
A. S. Perelson, Modelling viral and immune system dynamics,, Nat. Rev. Immunol, 2 (2002), 28.
doi: 10.1038/nri700. |
[13] |
A. Perelson, D. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells,, Math. Biosci., 114 (1993), 81.
doi: 10.1016/0025-5564(93)90043-A. |
[14] |
A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.
doi: 10.1137/S0036144598335107. |
[15] |
A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.
doi: 10.1126/science.271.5255.1582. |
[16] |
R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology,, Proc. R. Soc. Lond. B., 269 (2002), 271.
doi: 10.1098/rspb.2001.1816. |
[17] |
L. Rong, M. A. Gilchrist, Z. Feng and A. S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility,, J. Theoret. Biol., 247 (2007), 804.
doi: 10.1016/j.jtbi.2007.04.014. |
[18] |
X. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics,, J. Math. Anal. Appl., 329 (2007), 281.
doi: 10.1016/j.jmaa.2006.06.064. |
[19] |
J. Tumwiine, J. Y. T. Mugisha and L. S. Luboobi, A host-vector model for malaria with infective immigrants,, J. Math. Anal. Appl., 361 (2010), 139.
doi: 10.1016/j.jmaa.2009.09.005. |
[20] |
C. Vargas De León, Constructions of Lyapunov functions for classic SIS, SIR and SIRS epidemic models with variable population size,, Foro-Red-Mat: Revista Electrónica de Contenido Matemático, 26 (2009). Google Scholar |
[21] |
L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells,, Math. Biosci., 200 (2006), 44.
doi: 10.1016/j.mbs.2005.12.026. |
[1] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[2] |
Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020431 |
[3] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[4] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[5] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[6] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[7] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[8] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[9] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[10] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[11] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[12] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[13] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[14] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[15] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[16] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[17] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[18] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[19] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[20] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]