May  2014, 19(3): 761-773. doi: 10.3934/dcdsb.2014.19.761

Average criteria for periodic neural networks with delay

1. 

Dipartimento di Matematica, Universitá degli studi di Bari, 70125 Bari, Italy

Received  June 2013 Revised  October 2013 Published  February 2014

By using Lyapunov functions and some recent estimates of Halanay type, new criteria are introduced for the global exponential stability of a class of cellular neural networks, with delay and periodic coefficients and inputs. The novelty of those criteria lies in the fact that they are very efficient in presence of oscillating coefficients, because they are given in average form.
Citation: Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761
References:
[1]

S. Ahmad and I. M. Stamova, Global exponential stability for impulsive cellular neural networks with time-delays,, Nonlinear Anal., 69 (2008), 786.  doi: 10.1016/j.na.2008.02.067.  Google Scholar

[2]

H. Gu, H. Jiang and Z. Teng, Stability and periodicity in high-order neural networks with impulsive effects,, Nonlinear Anal., 68 (2008), 3186.  doi: 10.1016/j.na.2007.03.024.  Google Scholar

[3]

H. Jiang, Z. Li and Z. Teng, Boundedness and stability for nonautonomous cellular networks with delays,, Phys. Lett. A, 306 (2003), 313.  doi: 10.1016/S0375-9601(02)01608-0.  Google Scholar

[4]

B. Li and D. Xu, Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time varying delays,, Appl. Math. Comput., 219 (2012), 2506.  doi: 10.1016/j.amc.2012.08.086.  Google Scholar

[5]

B. Lisena, Exponential stability of Hopfield neural networks with impulses,, Nonlinear Anal. Real World Appl., 12 (2011), 1923.  doi: 10.1016/j.nonrwa.2010.12.008.  Google Scholar

[6]

B. Lisena, Dynamical behavior of impulsive and periodic Cohen-Grossberg neural networks,, Nonlinear Anal., 74 (2011), 4511.  doi: 10.1016/j.na.2011.04.015.  Google Scholar

[7]

B. Lisena, Asymptotic properties in a delay differential inequality with periodic coefficients,, Mediterr. J. Math., 10 (2013), 1717.  doi: 10.1007/s00009-013-0261-5.  Google Scholar

[8]

B. Liu and L. Huang, Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays,, Phys. Lett. A, 349 (2006), 474.   Google Scholar

[9]

H. Liu and L. Wang, Globally exponential stability and periodic solutions of CNNs with variable coefficients and variable delays,, Chaos Solitons Fractals, 29 (2006), 1137.  doi: 10.1016/j.chaos.2005.08.120.  Google Scholar

[10]

S. Long and D. Xu, Delay-dependent stability analysis for impulsive neural networks with time varying delays,, Neurocomputing, 71 (2008), 1705.  doi: 10.1016/j.neucom.2007.03.010.  Google Scholar

[11]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17.  doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[12]

Y. Shao, Exponential stability of periodic neural networks with impulsive effects and time-varying delays,, Appl. Math. Comput., 217 (2011), 6893.  doi: 10.1016/j.amc.2011.01.068.  Google Scholar

[13]

I. M. Stamova and R. Ilarionov, On global exponential stability for impulsive cellular neural networks with time-varying delays,, Comput. Math. Appl., 59 (2010), 3508.  doi: 10.1016/j.camwa.2010.03.043.  Google Scholar

[14]

M. Tan and Y. Tan, Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays,, Appl. Math. Model., 33 (2009), 373.  doi: 10.1016/j.apm.2007.11.010.  Google Scholar

[15]

H. Wang, C. Li and H. Xu, Existence and global exponential stability of periodic solution of cellular neural networks with delay and impulses,, Results Math., 58 (2010), 191.  doi: 10.1007/s00025-010-0048-y.  Google Scholar

[16]

Z. Yuan and L. Yuan, Existence and global convergence of periodic solution of delayed neural networks,, Math. Comput. Modelling, 48 (2008), 101.  doi: 10.1016/j.mcm.2007.08.010.  Google Scholar

show all references

References:
[1]

S. Ahmad and I. M. Stamova, Global exponential stability for impulsive cellular neural networks with time-delays,, Nonlinear Anal., 69 (2008), 786.  doi: 10.1016/j.na.2008.02.067.  Google Scholar

[2]

H. Gu, H. Jiang and Z. Teng, Stability and periodicity in high-order neural networks with impulsive effects,, Nonlinear Anal., 68 (2008), 3186.  doi: 10.1016/j.na.2007.03.024.  Google Scholar

[3]

H. Jiang, Z. Li and Z. Teng, Boundedness and stability for nonautonomous cellular networks with delays,, Phys. Lett. A, 306 (2003), 313.  doi: 10.1016/S0375-9601(02)01608-0.  Google Scholar

[4]

B. Li and D. Xu, Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time varying delays,, Appl. Math. Comput., 219 (2012), 2506.  doi: 10.1016/j.amc.2012.08.086.  Google Scholar

[5]

B. Lisena, Exponential stability of Hopfield neural networks with impulses,, Nonlinear Anal. Real World Appl., 12 (2011), 1923.  doi: 10.1016/j.nonrwa.2010.12.008.  Google Scholar

[6]

B. Lisena, Dynamical behavior of impulsive and periodic Cohen-Grossberg neural networks,, Nonlinear Anal., 74 (2011), 4511.  doi: 10.1016/j.na.2011.04.015.  Google Scholar

[7]

B. Lisena, Asymptotic properties in a delay differential inequality with periodic coefficients,, Mediterr. J. Math., 10 (2013), 1717.  doi: 10.1007/s00009-013-0261-5.  Google Scholar

[8]

B. Liu and L. Huang, Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays,, Phys. Lett. A, 349 (2006), 474.   Google Scholar

[9]

H. Liu and L. Wang, Globally exponential stability and periodic solutions of CNNs with variable coefficients and variable delays,, Chaos Solitons Fractals, 29 (2006), 1137.  doi: 10.1016/j.chaos.2005.08.120.  Google Scholar

[10]

S. Long and D. Xu, Delay-dependent stability analysis for impulsive neural networks with time varying delays,, Neurocomputing, 71 (2008), 1705.  doi: 10.1016/j.neucom.2007.03.010.  Google Scholar

[11]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17.  doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[12]

Y. Shao, Exponential stability of periodic neural networks with impulsive effects and time-varying delays,, Appl. Math. Comput., 217 (2011), 6893.  doi: 10.1016/j.amc.2011.01.068.  Google Scholar

[13]

I. M. Stamova and R. Ilarionov, On global exponential stability for impulsive cellular neural networks with time-varying delays,, Comput. Math. Appl., 59 (2010), 3508.  doi: 10.1016/j.camwa.2010.03.043.  Google Scholar

[14]

M. Tan and Y. Tan, Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays,, Appl. Math. Model., 33 (2009), 373.  doi: 10.1016/j.apm.2007.11.010.  Google Scholar

[15]

H. Wang, C. Li and H. Xu, Existence and global exponential stability of periodic solution of cellular neural networks with delay and impulses,, Results Math., 58 (2010), 191.  doi: 10.1007/s00025-010-0048-y.  Google Scholar

[16]

Z. Yuan and L. Yuan, Existence and global convergence of periodic solution of delayed neural networks,, Math. Comput. Modelling, 48 (2008), 101.  doi: 10.1016/j.mcm.2007.08.010.  Google Scholar

[1]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[2]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[3]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

[4]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[5]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[8]

István Győri, László Horváth. Sharp estimation for the solutions of delay differential and Halanay type inequalities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3211-3242. doi: 10.3934/dcds.2017137

[9]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

[10]

Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3347-3360. doi: 10.3934/dcdsb.2018248

[11]

Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056

[12]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[13]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[14]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[15]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[16]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[17]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[18]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[19]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure & Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[20]

Larry Turyn. Cellular neural networks: asymmetric templates and spatial chaos. Conference Publications, 2003, 2003 (Special) : 864-871. doi: 10.3934/proc.2003.2003.864

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]