May  2014, 19(3): 761-773. doi: 10.3934/dcdsb.2014.19.761

Average criteria for periodic neural networks with delay

1. 

Dipartimento di Matematica, Universitá degli studi di Bari, 70125 Bari, Italy

Received  June 2013 Revised  October 2013 Published  February 2014

By using Lyapunov functions and some recent estimates of Halanay type, new criteria are introduced for the global exponential stability of a class of cellular neural networks, with delay and periodic coefficients and inputs. The novelty of those criteria lies in the fact that they are very efficient in presence of oscillating coefficients, because they are given in average form.
Citation: Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761
References:
[1]

S. Ahmad and I. M. Stamova, Global exponential stability for impulsive cellular neural networks with time-delays,, Nonlinear Anal., 69 (2008), 786.  doi: 10.1016/j.na.2008.02.067.  Google Scholar

[2]

H. Gu, H. Jiang and Z. Teng, Stability and periodicity in high-order neural networks with impulsive effects,, Nonlinear Anal., 68 (2008), 3186.  doi: 10.1016/j.na.2007.03.024.  Google Scholar

[3]

H. Jiang, Z. Li and Z. Teng, Boundedness and stability for nonautonomous cellular networks with delays,, Phys. Lett. A, 306 (2003), 313.  doi: 10.1016/S0375-9601(02)01608-0.  Google Scholar

[4]

B. Li and D. Xu, Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time varying delays,, Appl. Math. Comput., 219 (2012), 2506.  doi: 10.1016/j.amc.2012.08.086.  Google Scholar

[5]

B. Lisena, Exponential stability of Hopfield neural networks with impulses,, Nonlinear Anal. Real World Appl., 12 (2011), 1923.  doi: 10.1016/j.nonrwa.2010.12.008.  Google Scholar

[6]

B. Lisena, Dynamical behavior of impulsive and periodic Cohen-Grossberg neural networks,, Nonlinear Anal., 74 (2011), 4511.  doi: 10.1016/j.na.2011.04.015.  Google Scholar

[7]

B. Lisena, Asymptotic properties in a delay differential inequality with periodic coefficients,, Mediterr. J. Math., 10 (2013), 1717.  doi: 10.1007/s00009-013-0261-5.  Google Scholar

[8]

B. Liu and L. Huang, Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays,, Phys. Lett. A, 349 (2006), 474.   Google Scholar

[9]

H. Liu and L. Wang, Globally exponential stability and periodic solutions of CNNs with variable coefficients and variable delays,, Chaos Solitons Fractals, 29 (2006), 1137.  doi: 10.1016/j.chaos.2005.08.120.  Google Scholar

[10]

S. Long and D. Xu, Delay-dependent stability analysis for impulsive neural networks with time varying delays,, Neurocomputing, 71 (2008), 1705.  doi: 10.1016/j.neucom.2007.03.010.  Google Scholar

[11]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17.  doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[12]

Y. Shao, Exponential stability of periodic neural networks with impulsive effects and time-varying delays,, Appl. Math. Comput., 217 (2011), 6893.  doi: 10.1016/j.amc.2011.01.068.  Google Scholar

[13]

I. M. Stamova and R. Ilarionov, On global exponential stability for impulsive cellular neural networks with time-varying delays,, Comput. Math. Appl., 59 (2010), 3508.  doi: 10.1016/j.camwa.2010.03.043.  Google Scholar

[14]

M. Tan and Y. Tan, Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays,, Appl. Math. Model., 33 (2009), 373.  doi: 10.1016/j.apm.2007.11.010.  Google Scholar

[15]

H. Wang, C. Li and H. Xu, Existence and global exponential stability of periodic solution of cellular neural networks with delay and impulses,, Results Math., 58 (2010), 191.  doi: 10.1007/s00025-010-0048-y.  Google Scholar

[16]

Z. Yuan and L. Yuan, Existence and global convergence of periodic solution of delayed neural networks,, Math. Comput. Modelling, 48 (2008), 101.  doi: 10.1016/j.mcm.2007.08.010.  Google Scholar

show all references

References:
[1]

S. Ahmad and I. M. Stamova, Global exponential stability for impulsive cellular neural networks with time-delays,, Nonlinear Anal., 69 (2008), 786.  doi: 10.1016/j.na.2008.02.067.  Google Scholar

[2]

H. Gu, H. Jiang and Z. Teng, Stability and periodicity in high-order neural networks with impulsive effects,, Nonlinear Anal., 68 (2008), 3186.  doi: 10.1016/j.na.2007.03.024.  Google Scholar

[3]

H. Jiang, Z. Li and Z. Teng, Boundedness and stability for nonautonomous cellular networks with delays,, Phys. Lett. A, 306 (2003), 313.  doi: 10.1016/S0375-9601(02)01608-0.  Google Scholar

[4]

B. Li and D. Xu, Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time varying delays,, Appl. Math. Comput., 219 (2012), 2506.  doi: 10.1016/j.amc.2012.08.086.  Google Scholar

[5]

B. Lisena, Exponential stability of Hopfield neural networks with impulses,, Nonlinear Anal. Real World Appl., 12 (2011), 1923.  doi: 10.1016/j.nonrwa.2010.12.008.  Google Scholar

[6]

B. Lisena, Dynamical behavior of impulsive and periodic Cohen-Grossberg neural networks,, Nonlinear Anal., 74 (2011), 4511.  doi: 10.1016/j.na.2011.04.015.  Google Scholar

[7]

B. Lisena, Asymptotic properties in a delay differential inequality with periodic coefficients,, Mediterr. J. Math., 10 (2013), 1717.  doi: 10.1007/s00009-013-0261-5.  Google Scholar

[8]

B. Liu and L. Huang, Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays,, Phys. Lett. A, 349 (2006), 474.   Google Scholar

[9]

H. Liu and L. Wang, Globally exponential stability and periodic solutions of CNNs with variable coefficients and variable delays,, Chaos Solitons Fractals, 29 (2006), 1137.  doi: 10.1016/j.chaos.2005.08.120.  Google Scholar

[10]

S. Long and D. Xu, Delay-dependent stability analysis for impulsive neural networks with time varying delays,, Neurocomputing, 71 (2008), 1705.  doi: 10.1016/j.neucom.2007.03.010.  Google Scholar

[11]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17.  doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[12]

Y. Shao, Exponential stability of periodic neural networks with impulsive effects and time-varying delays,, Appl. Math. Comput., 217 (2011), 6893.  doi: 10.1016/j.amc.2011.01.068.  Google Scholar

[13]

I. M. Stamova and R. Ilarionov, On global exponential stability for impulsive cellular neural networks with time-varying delays,, Comput. Math. Appl., 59 (2010), 3508.  doi: 10.1016/j.camwa.2010.03.043.  Google Scholar

[14]

M. Tan and Y. Tan, Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays,, Appl. Math. Model., 33 (2009), 373.  doi: 10.1016/j.apm.2007.11.010.  Google Scholar

[15]

H. Wang, C. Li and H. Xu, Existence and global exponential stability of periodic solution of cellular neural networks with delay and impulses,, Results Math., 58 (2010), 191.  doi: 10.1007/s00025-010-0048-y.  Google Scholar

[16]

Z. Yuan and L. Yuan, Existence and global convergence of periodic solution of delayed neural networks,, Math. Comput. Modelling, 48 (2008), 101.  doi: 10.1016/j.mcm.2007.08.010.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. Aims: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]