\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling wave solutions of competitive models with free boundaries

Abstract Related Papers Cited by
  • We study two systems of reaction diffusion equations with monostable or bistable type of nonlinearities and with free boundaries. These systems are used as multi-species competitive model. For two-species models, we prove the existence of traveling wave solutions, each of which consists of two semi-waves intersecting at the free boundary. For three-species models, we also obtain some traveling wave solutions. In this case, however, every traveling wave solution consists of two semi-waves and one compactly supported wave in between, each intersecting with its neighbors at the free boundaries.
    Mathematics Subject Classification: Primary: 35K57, 35C07; Secondary: 35R35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Math., 446, Springer, Berlin, (1975), pp. 5-49.

    [2]

    D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.doi: 10.1016/0001-8708(78)90130-5.

    [3]

    C. H. Chang and C. C. Chen, Traveling wave solutions of a free boundary problem for a two-species competitive model, Commun. Pure Appl. Anal., 12 (2013), 1065-1074.doi: 10.3934/cpaa.2013.12.1065.

    [4]

    E. C. M. Crooks, E. N. Dancer, D. Hilhorst, M. Mimura and H. Ninomiya, Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions, Nonlinear Anal. Real World Appl., 5 (2004), 645-665.doi: 10.1016/j.nonrwa.2004.01.004.

    [5]

    E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.doi: 10.1017/S0956792598003660.

    [6]

    Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.doi: 10.1137/090771089.

    [7]

    Y. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., preprint, arXiv:1301.5373.

    [8]

    D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.doi: 10.1007/BF03168569.

    [9]

    M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186.doi: 10.1007/BF03167042.

    [10]

    M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.

    [11]

    M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.

    [12]

    H. Murakawa and H. Ninomiya, Fast reaction limit of a three-component reaction-diffusion system, J. Math. Anal. Appl., 379 (2011), 150-170.doi: 10.1016/j.jmaa.2010.12.040.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return