Citation: |
[1] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Math., 446, Springer, Berlin, (1975), pp. 5-49. |
[2] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.doi: 10.1016/0001-8708(78)90130-5. |
[3] |
C. H. Chang and C. C. Chen, Traveling wave solutions of a free boundary problem for a two-species competitive model, Commun. Pure Appl. Anal., 12 (2013), 1065-1074.doi: 10.3934/cpaa.2013.12.1065. |
[4] |
E. C. M. Crooks, E. N. Dancer, D. Hilhorst, M. Mimura and H. Ninomiya, Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions, Nonlinear Anal. Real World Appl., 5 (2004), 645-665.doi: 10.1016/j.nonrwa.2004.01.004. |
[5] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.doi: 10.1017/S0956792598003660. |
[6] |
Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.doi: 10.1137/090771089. |
[7] |
Y. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., preprint, arXiv:1301.5373. |
[8] |
D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.doi: 10.1007/BF03168569. |
[9] |
M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186.doi: 10.1007/BF03167042. |
[10] |
M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498. |
[11] |
M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280. |
[12] |
H. Murakawa and H. Ninomiya, Fast reaction limit of a three-component reaction-diffusion system, J. Math. Anal. Appl., 379 (2011), 150-170.doi: 10.1016/j.jmaa.2010.12.040. |