June  2014, 19(4): 867-881. doi: 10.3934/dcdsb.2014.19.867

Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model

1. 

Morton Hall 321, Ohio University, Athens, OH, 45701, United States

Received  January 2013 Revised  September 2013 Published  April 2014

RS feedback models have been successful in explaining the observed phenomenon of clustering in autonomous oscillation in yeast, but current models do not include the biological reality of dynamical delay and do not have the related property of quorum sensing. Here an RS type ODE model for cell cycle feedback, including an explicit term modeling a chemical feedback mediating agent, is analyzed. New dynamics include population dependent effects: subcritical pitchfork bifurcations, and quorum sensing occur. The model suggests new experimental directions in autonomous oscillation in yeast.
Citation: Richard L Buckalew. Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 867-881. doi: 10.3934/dcdsb.2014.19.867
References:
[1]

M. Bier, B. M. Bakker and H. V. Westerhoff, How yeast cells synchronize their glycolytic oscillations: A perturbation analytic treatment,, Biophysical Journal, 78 (2000), 1087.  doi: 10.1016/S0006-3495(00)76667-7.  Google Scholar

[2]

G. Birol, A. Q. Zamamiri and M. Hjortsø, Frequency analysis of autonomously oscillating yeast cultures,, Process Biochemistry, 35 (2000), 1085.  doi: 10.1016/S0032-9592(00)00144-8.  Google Scholar

[3]

E. Boczko, T. Gedeon, C. Stowers and T. Young, ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast,, Journal of Biological Dynamics, 4 (2010), 328.  doi: 10.1080/17513750903288003.  Google Scholar

[4]

N. Breitsch, G. Moses, T. Young, E. Boczko, Universality of stable periodic solutions in a cell cycle model,, Revision under review., ().   Google Scholar

[5]

C. Chen and K. McDonald, Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism,, Biotechnology and Bioengineering, 36 (1990), 28.   Google Scholar

[6]

R. Corless, G. Gonnet, D. Hare, D. Jeffrey and D. Knuth, On the Lambert W function,, Advances in Computational Mathematics, 5 (1996), 329.  doi: 10.1007/BF02124750.  Google Scholar

[7]

S. Danø, P. G. Sørensen and F. Hynne, Sustained oscillations in living cells,, Letters to Nature, 402 (1999), 320.   Google Scholar

[8]

S. De Monte, F. d'Ovidio, S. Danø and P. G. Sørensen, Dynamical quorum sensing: Population density encoded in cellular dynamics,, PNAS, 104 (2007), 18377.   Google Scholar

[9]

R. K. Finn and R. E. Wilson, Population dynamic behavior of the Chemostat system,, Journal of Agricultural and Food Chemistry, 2 (1954), 66.   Google Scholar

[10]

M. Henson, Modeling the synchronization of yeast respiratory oscillations,, Journal of Theoretical Biology, 231 (2004), 443.  doi: 10.1016/j.jtbi.2004.07.009.  Google Scholar

[11]

A. J. Homburg, T. Young and M. Gharaei, Bifurcations of random differential equations with bounded noise,, in Bounded Stochastic Processes in Physics, (2013), 133.  doi: 10.1007/978-1-4614-7385-5_9.  Google Scholar

[12]

M. A. Hjortsø, A conceptual model of autonomous oscillations in microbial cultures,, Chemical Engineering Science, 49 (1994), 1083.  doi: 10.1016/0009-2509(94)85081-X.  Google Scholar

[13]

M. Keulers, T. Suzuki, A. D. Satroutdinov and H. Kuriuama, Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol,, FEMS Microbiology Letters, 142 (1996), 253.  doi: 10.1016/0378-1097(96)00277-7.  Google Scholar

[14]

M. T. Kuenzi and A. Fiechter, Changes in carbohydrate composition and trehalose-activity during the budding cycle of Saccharomyces cerevisiae,, Archives of Microbiology, 64 (1969), 396.  doi: 10.1007/BF00417021.  Google Scholar

[15]

H. K. von Meyenburg, Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth,, Archives of Microbiology, 66 (1969), 289.   Google Scholar

[16]

P. R. Patnaik, Oscillatory metabolism of Saccharomyces cerevisiae: An overview of mechanisms and models,, Biotechnology Advances, 21 (2003), 183.  doi: 10.1016/S0734-9750(03)00022-3.  Google Scholar

[17]

P. Richard, The rhythm of yeast,, FEMS Microbiology Reviews, 27 (2003), 547.  doi: 10.1016/S0168-6445(03)00065-2.  Google Scholar

[18]

J. B. Robertson, C. C. Stowers, E. M. Boczko and C. H. Johnson, Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast,, PNAS, 105 (2008), 17988.  doi: 10.1073/pnas.0809482105.  Google Scholar

[19]

M. R. Tinsley, A. F. Taylor, Z. Huang and K. Showalter, Emergence of collective behavior in groups of excitable catalyst-loaded particles, spatiotemporal dynamical quorum sensing,, Physical Review Letters, 102 (2009).  doi: 10.1103/PhysRevLett.102.158301.  Google Scholar

[20]

B. P. Tu, A. Kudlicki, M. Rowicka and S. L. McKnight, Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes,, Science, 310 (2005), 1152.  doi: 10.1126/science.1120499.  Google Scholar

[21]

T. Young, B. Fernandez, R. Buckalew, G. Moses and E. Boczko, Clustering in cell cycle dynamics with general response/signaling feedback,, Journal of Theoretical Biology, 292 (2012), 103.  doi: 10.1016/j.jtbi.2011.10.002.  Google Scholar

show all references

References:
[1]

M. Bier, B. M. Bakker and H. V. Westerhoff, How yeast cells synchronize their glycolytic oscillations: A perturbation analytic treatment,, Biophysical Journal, 78 (2000), 1087.  doi: 10.1016/S0006-3495(00)76667-7.  Google Scholar

[2]

G. Birol, A. Q. Zamamiri and M. Hjortsø, Frequency analysis of autonomously oscillating yeast cultures,, Process Biochemistry, 35 (2000), 1085.  doi: 10.1016/S0032-9592(00)00144-8.  Google Scholar

[3]

E. Boczko, T. Gedeon, C. Stowers and T. Young, ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast,, Journal of Biological Dynamics, 4 (2010), 328.  doi: 10.1080/17513750903288003.  Google Scholar

[4]

N. Breitsch, G. Moses, T. Young, E. Boczko, Universality of stable periodic solutions in a cell cycle model,, Revision under review., ().   Google Scholar

[5]

C. Chen and K. McDonald, Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism,, Biotechnology and Bioengineering, 36 (1990), 28.   Google Scholar

[6]

R. Corless, G. Gonnet, D. Hare, D. Jeffrey and D. Knuth, On the Lambert W function,, Advances in Computational Mathematics, 5 (1996), 329.  doi: 10.1007/BF02124750.  Google Scholar

[7]

S. Danø, P. G. Sørensen and F. Hynne, Sustained oscillations in living cells,, Letters to Nature, 402 (1999), 320.   Google Scholar

[8]

S. De Monte, F. d'Ovidio, S. Danø and P. G. Sørensen, Dynamical quorum sensing: Population density encoded in cellular dynamics,, PNAS, 104 (2007), 18377.   Google Scholar

[9]

R. K. Finn and R. E. Wilson, Population dynamic behavior of the Chemostat system,, Journal of Agricultural and Food Chemistry, 2 (1954), 66.   Google Scholar

[10]

M. Henson, Modeling the synchronization of yeast respiratory oscillations,, Journal of Theoretical Biology, 231 (2004), 443.  doi: 10.1016/j.jtbi.2004.07.009.  Google Scholar

[11]

A. J. Homburg, T. Young and M. Gharaei, Bifurcations of random differential equations with bounded noise,, in Bounded Stochastic Processes in Physics, (2013), 133.  doi: 10.1007/978-1-4614-7385-5_9.  Google Scholar

[12]

M. A. Hjortsø, A conceptual model of autonomous oscillations in microbial cultures,, Chemical Engineering Science, 49 (1994), 1083.  doi: 10.1016/0009-2509(94)85081-X.  Google Scholar

[13]

M. Keulers, T. Suzuki, A. D. Satroutdinov and H. Kuriuama, Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol,, FEMS Microbiology Letters, 142 (1996), 253.  doi: 10.1016/0378-1097(96)00277-7.  Google Scholar

[14]

M. T. Kuenzi and A. Fiechter, Changes in carbohydrate composition and trehalose-activity during the budding cycle of Saccharomyces cerevisiae,, Archives of Microbiology, 64 (1969), 396.  doi: 10.1007/BF00417021.  Google Scholar

[15]

H. K. von Meyenburg, Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth,, Archives of Microbiology, 66 (1969), 289.   Google Scholar

[16]

P. R. Patnaik, Oscillatory metabolism of Saccharomyces cerevisiae: An overview of mechanisms and models,, Biotechnology Advances, 21 (2003), 183.  doi: 10.1016/S0734-9750(03)00022-3.  Google Scholar

[17]

P. Richard, The rhythm of yeast,, FEMS Microbiology Reviews, 27 (2003), 547.  doi: 10.1016/S0168-6445(03)00065-2.  Google Scholar

[18]

J. B. Robertson, C. C. Stowers, E. M. Boczko and C. H. Johnson, Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast,, PNAS, 105 (2008), 17988.  doi: 10.1073/pnas.0809482105.  Google Scholar

[19]

M. R. Tinsley, A. F. Taylor, Z. Huang and K. Showalter, Emergence of collective behavior in groups of excitable catalyst-loaded particles, spatiotemporal dynamical quorum sensing,, Physical Review Letters, 102 (2009).  doi: 10.1103/PhysRevLett.102.158301.  Google Scholar

[20]

B. P. Tu, A. Kudlicki, M. Rowicka and S. L. McKnight, Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes,, Science, 310 (2005), 1152.  doi: 10.1126/science.1120499.  Google Scholar

[21]

T. Young, B. Fernandez, R. Buckalew, G. Moses and E. Boczko, Clustering in cell cycle dynamics with general response/signaling feedback,, Journal of Theoretical Biology, 292 (2012), 103.  doi: 10.1016/j.jtbi.2011.10.002.  Google Scholar

[1]

Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036

[2]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[3]

Ryotaro Tsuneki, Shinji Doi, Junko Inoue. Generation of slow phase-locked oscillation and variability of the interspike intervals in globally coupled neuronal oscillators. Mathematical Biosciences & Engineering, 2014, 11 (1) : 125-138. doi: 10.3934/mbe.2014.11.125

[4]

Paolo Fergola, Marianna Cerasuolo, Edoardo Beretta. An allelopathic competition model with quorum sensing and delayed toxicant production. Mathematical Biosciences & Engineering, 2006, 3 (1) : 37-50. doi: 10.3934/mbe.2006.3.37

[5]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[6]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[7]

Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121

[8]

Avner Friedman. PDE problems arising in mathematical biology. Networks & Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691

[9]

Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577

[10]

Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks & Heterogeneous Media, 2019, 14 (1) : ⅰ-ⅱ. doi: 10.3934/nhm.20191i

[11]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

[12]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351

[13]

C*-actions on C^3 are linearizable. S. Kaliman, M. Koras, L. Makar-Limanov and P. Russell. Electronic Research Announcements, 1997, 3: 63-71.

[14]

Armen Shirikyan. Ergodicity for a class of Markov processes and applications to randomly forced PDE'S. II. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 911-926. doi: 10.3934/dcdsb.2006.6.911

[15]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : ⅰ-ⅴ. doi: 10.3934/dcdsb.20193i

[16]

Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233

[17]

Paweł Pilarczyk. Topological-numerical approach to the existence of periodic trajectories in ODE's. Conference Publications, 2003, 2003 (Special) : 701-708. doi: 10.3934/proc.2003.2003.701

[18]

Michal Fečkan. Blue sky catastrophes in weakly coupled chains of reversible oscillators. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 193-200. doi: 10.3934/dcdsb.2003.3.193

[19]

R. Yamapi, R.S. MacKay. Stability of synchronization in a shift-invariant ring of mutually coupled oscillators. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 973-996. doi: 10.3934/dcdsb.2008.10.973

[20]

Hayato Chiba. Continuous limit and the moments system for the globally coupled phase oscillators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1891-1903. doi: 10.3934/dcds.2013.33.1891

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]