-
Previous Article
A survey of migration-selection models in population genetics
- DCDS-B Home
- This Issue
- Next Article
Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model
1. | Morton Hall 321, Ohio University, Athens, OH, 45701, United States |
References:
[1] |
M. Bier, B. M. Bakker and H. V. Westerhoff, How yeast cells synchronize their glycolytic oscillations: A perturbation analytic treatment, Biophysical Journal, 78 (2000), 1087-1093.
doi: 10.1016/S0006-3495(00)76667-7. |
[2] |
G. Birol, A. Q. Zamamiri and M. Hjortsø, Frequency analysis of autonomously oscillating yeast cultures, Process Biochemistry, 35 (2000), 1085-1091.
doi: 10.1016/S0032-9592(00)00144-8. |
[3] |
E. Boczko, T. Gedeon, C. Stowers and T. Young, ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast, Journal of Biological Dynamics, 4 (2010), 328-345.
doi: 10.1080/17513750903288003. |
[4] |
N. Breitsch, G. Moses, T. Young, E. Boczko, Universality of stable periodic solutions in a cell cycle model, Revision under review. |
[5] |
C. Chen and K. McDonald, Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism, Biotechnology and Bioengineering, 36 (1990), 28-38. |
[6] |
R. Corless, G. Gonnet, D. Hare, D. Jeffrey and D. Knuth, On the Lambert W function, Advances in Computational Mathematics, 5 (1996), 329-359.
doi: 10.1007/BF02124750. |
[7] |
S. Danø, P. G. Sørensen and F. Hynne, Sustained oscillations in living cells, Letters to Nature, 402 (1999), 320-322. |
[8] |
S. De Monte, F. d'Ovidio, S. Danø and P. G. Sørensen, Dynamical quorum sensing: Population density encoded in cellular dynamics, PNAS, 104 (2007), 18377-18381 |
[9] |
R. K. Finn and R. E. Wilson, Population dynamic behavior of the Chemostat system, Journal of Agricultural and Food Chemistry, 2 (1954), 66-69. |
[10] |
M. Henson, Modeling the synchronization of yeast respiratory oscillations, Journal of Theoretical Biology, 231 (2004), 443-458.
doi: 10.1016/j.jtbi.2004.07.009. |
[11] |
A. J. Homburg, T. Young and M. Gharaei, Bifurcations of random differential equations with bounded noise, in Bounded Stochastic Processes in Physics, Biology and Engineering (ed. A. D'Onofrio), Birkhäuser-Springer, 2013, 133-149.
doi: 10.1007/978-1-4614-7385-5_9. |
[12] |
M. A. Hjortsø, A conceptual model of autonomous oscillations in microbial cultures, Chemical Engineering Science, 49 (1994), 1083-1095.
doi: 10.1016/0009-2509(94)85081-X. |
[13] |
M. Keulers, T. Suzuki, A. D. Satroutdinov and H. Kuriuama, Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol, FEMS Microbiology Letters, 142 (1996), 253-258.
doi: 10.1016/0378-1097(96)00277-7. |
[14] |
M. T. Kuenzi and A. Fiechter, Changes in carbohydrate composition and trehalose-activity during the budding cycle of Saccharomyces cerevisiae, Archives of Microbiology, 64 (1969), 396-407.
doi: 10.1007/BF00417021. |
[15] |
H. K. von Meyenburg, Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth, Archives of Microbiology, 66 (1969), 289-303. |
[16] |
P. R. Patnaik, Oscillatory metabolism of Saccharomyces cerevisiae: An overview of mechanisms and models, Biotechnology Advances, 21 (2003), 183-192.
doi: 10.1016/S0734-9750(03)00022-3. |
[17] |
P. Richard, The rhythm of yeast, FEMS Microbiology Reviews, 27 (2003), 547-557.
doi: 10.1016/S0168-6445(03)00065-2. |
[18] |
J. B. Robertson, C. C. Stowers, E. M. Boczko and C. H. Johnson, Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast, PNAS, 105 (2008), 17988-17993.
doi: 10.1073/pnas.0809482105. |
[19] |
M. R. Tinsley, A. F. Taylor, Z. Huang and K. Showalter, Emergence of collective behavior in groups of excitable catalyst-loaded particles, spatiotemporal dynamical quorum sensing, Physical Review Letters, 102 (2009).
doi: 10.1103/PhysRevLett.102.158301. |
[20] |
B. P. Tu, A. Kudlicki, M. Rowicka and S. L. McKnight, Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes, Science, 310 (2005), 1152-1158.
doi: 10.1126/science.1120499. |
[21] |
T. Young, B. Fernandez, R. Buckalew, G. Moses and E. Boczko, Clustering in cell cycle dynamics with general response/signaling feedback, Journal of Theoretical Biology, 292 (2012), 103-115.
doi: 10.1016/j.jtbi.2011.10.002. |
show all references
References:
[1] |
M. Bier, B. M. Bakker and H. V. Westerhoff, How yeast cells synchronize their glycolytic oscillations: A perturbation analytic treatment, Biophysical Journal, 78 (2000), 1087-1093.
doi: 10.1016/S0006-3495(00)76667-7. |
[2] |
G. Birol, A. Q. Zamamiri and M. Hjortsø, Frequency analysis of autonomously oscillating yeast cultures, Process Biochemistry, 35 (2000), 1085-1091.
doi: 10.1016/S0032-9592(00)00144-8. |
[3] |
E. Boczko, T. Gedeon, C. Stowers and T. Young, ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast, Journal of Biological Dynamics, 4 (2010), 328-345.
doi: 10.1080/17513750903288003. |
[4] |
N. Breitsch, G. Moses, T. Young, E. Boczko, Universality of stable periodic solutions in a cell cycle model, Revision under review. |
[5] |
C. Chen and K. McDonald, Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism, Biotechnology and Bioengineering, 36 (1990), 28-38. |
[6] |
R. Corless, G. Gonnet, D. Hare, D. Jeffrey and D. Knuth, On the Lambert W function, Advances in Computational Mathematics, 5 (1996), 329-359.
doi: 10.1007/BF02124750. |
[7] |
S. Danø, P. G. Sørensen and F. Hynne, Sustained oscillations in living cells, Letters to Nature, 402 (1999), 320-322. |
[8] |
S. De Monte, F. d'Ovidio, S. Danø and P. G. Sørensen, Dynamical quorum sensing: Population density encoded in cellular dynamics, PNAS, 104 (2007), 18377-18381 |
[9] |
R. K. Finn and R. E. Wilson, Population dynamic behavior of the Chemostat system, Journal of Agricultural and Food Chemistry, 2 (1954), 66-69. |
[10] |
M. Henson, Modeling the synchronization of yeast respiratory oscillations, Journal of Theoretical Biology, 231 (2004), 443-458.
doi: 10.1016/j.jtbi.2004.07.009. |
[11] |
A. J. Homburg, T. Young and M. Gharaei, Bifurcations of random differential equations with bounded noise, in Bounded Stochastic Processes in Physics, Biology and Engineering (ed. A. D'Onofrio), Birkhäuser-Springer, 2013, 133-149.
doi: 10.1007/978-1-4614-7385-5_9. |
[12] |
M. A. Hjortsø, A conceptual model of autonomous oscillations in microbial cultures, Chemical Engineering Science, 49 (1994), 1083-1095.
doi: 10.1016/0009-2509(94)85081-X. |
[13] |
M. Keulers, T. Suzuki, A. D. Satroutdinov and H. Kuriuama, Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol, FEMS Microbiology Letters, 142 (1996), 253-258.
doi: 10.1016/0378-1097(96)00277-7. |
[14] |
M. T. Kuenzi and A. Fiechter, Changes in carbohydrate composition and trehalose-activity during the budding cycle of Saccharomyces cerevisiae, Archives of Microbiology, 64 (1969), 396-407.
doi: 10.1007/BF00417021. |
[15] |
H. K. von Meyenburg, Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth, Archives of Microbiology, 66 (1969), 289-303. |
[16] |
P. R. Patnaik, Oscillatory metabolism of Saccharomyces cerevisiae: An overview of mechanisms and models, Biotechnology Advances, 21 (2003), 183-192.
doi: 10.1016/S0734-9750(03)00022-3. |
[17] |
P. Richard, The rhythm of yeast, FEMS Microbiology Reviews, 27 (2003), 547-557.
doi: 10.1016/S0168-6445(03)00065-2. |
[18] |
J. B. Robertson, C. C. Stowers, E. M. Boczko and C. H. Johnson, Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast, PNAS, 105 (2008), 17988-17993.
doi: 10.1073/pnas.0809482105. |
[19] |
M. R. Tinsley, A. F. Taylor, Z. Huang and K. Showalter, Emergence of collective behavior in groups of excitable catalyst-loaded particles, spatiotemporal dynamical quorum sensing, Physical Review Letters, 102 (2009).
doi: 10.1103/PhysRevLett.102.158301. |
[20] |
B. P. Tu, A. Kudlicki, M. Rowicka and S. L. McKnight, Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes, Science, 310 (2005), 1152-1158.
doi: 10.1126/science.1120499. |
[21] |
T. Young, B. Fernandez, R. Buckalew, G. Moses and E. Boczko, Clustering in cell cycle dynamics with general response/signaling feedback, Journal of Theoretical Biology, 292 (2012), 103-115.
doi: 10.1016/j.jtbi.2011.10.002. |
[1] |
Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036 |
[2] |
Alexandre N. Carvalho, Luciano R. N. Rocha, José A. Langa, Rafael Obaya. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022083 |
[3] |
Ryotaro Tsuneki, Shinji Doi, Junko Inoue. Generation of slow phase-locked oscillation and variability of the interspike intervals in globally coupled neuronal oscillators. Mathematical Biosciences & Engineering, 2014, 11 (1) : 125-138. doi: 10.3934/mbe.2014.11.125 |
[4] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[5] |
Paolo Fergola, Marianna Cerasuolo, Edoardo Beretta. An allelopathic competition model with quorum sensing and delayed toxicant production. Mathematical Biosciences & Engineering, 2006, 3 (1) : 37-50. doi: 10.3934/mbe.2006.3.37 |
[6] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[7] |
Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i |
[8] |
Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121 |
[9] |
Avner Friedman. PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691 |
[10] |
Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577 |
[11] |
Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks and Heterogeneous Media, 2019, 14 (1) : i-ii. doi: 10.3934/nhm.20191i |
[12] |
Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737 |
[13] |
Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1085-1102. doi: 10.3934/dcdss.2021092 |
[14] |
Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351 |
[15] |
C*-actions on C^3 are linearizable. S. Kaliman, M. Koras, L. Makar-Limanov and P. Russell. Electronic Research Announcements, 1997, 3: 63-71. |
[16] |
Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : i-v. doi: 10.3934/dcdsb.20193i |
[17] |
Armen Shirikyan. Ergodicity for a class of Markov processes and applications to randomly forced PDE'S. II. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 911-926. doi: 10.3934/dcdsb.2006.6.911 |
[18] |
Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233 |
[19] |
Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control and Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003 |
[20] |
Michal Fečkan. Blue sky catastrophes in weakly coupled chains of reversible oscillators. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 193-200. doi: 10.3934/dcdsb.2003.3.193 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]