January  2015, 20(1): 1-21. doi: 10.3934/dcdsb.2015.20.1

Reaction, diffusion and chemotaxis in wave propagation

1. 

Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, United States

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  June 2014 Published  November 2014

By constructing an invariant set in the three dimensional space, we establish the existence of traveling wave solutions to a reaction-diffusion-chemotaxis model describing biological processes such as the bacterial chemotactic movement in response to oxygen and the initiation of angiogenesis. The minimal wave speed is shown to exist and the role of each process of reaction, diffusion and chemotaxis in the wave propagation is investigated. Our results reveal three essential biological implications: (1) the cell growth increases the wave speed; (2) the chemotaxis must be strong enough to make a contribution to the increment of the wave speed; (3) the diffusion rate plays a role in increasing the wave speed only when the cell growth is present.
Citation: Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1
References:
[1]

J. Adler, Chemotaxis in bacteria, Annual Review of Biochemistry, 44 (1975), 341-356. doi: 10.1146/annurev.bi.44.070175.002013.

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597. doi: 10.1126/science.166.3913.1588.

[3]

F. S. Berezovskaya, A. S. Novozhilov and G. P. Karev, Families of traveling impulse and fronts in some models with cross-diffusion, Nonlinear Analysis: Real World applications, 9 (2008), 1866-1881. doi: 10.1016/j.nonrwa.2007.06.001.

[4]

M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumors: The mathamatical modeling of the stages of tumor development, Math. Comput. Modeling, 23 (1996), 47-87.

[5]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146. doi: 10.1016/S1631-073X(02)00008-0.

[6]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan j. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x.

[7]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355. doi: 10.1137/S0036141001385046.

[8]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model, Interfaces Free Bound., 8 (2006), 223-245. doi: 10.4171/IFB/141.

[9]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25. doi: 10.1007/s00332-003-0548-y.

[10]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis, J. Theor. Biol., 30 (1971), 235-248. doi: 10.1016/0022-5193(71)90051-8.

[11]

H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42 (2001), 195-238. doi: 10.1007/s002850000037.

[12]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730. doi: 10.1137/S0036139995291106.

[13]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650. doi: 10.1142/S0218202511005519.

[14]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443. doi: 10.1137/110829453.

[15]

T. Li and Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541. doi: 10.1137/09075161X.

[16]

T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333. doi: 10.1016/j.jde.2010.09.020.

[17]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-761. doi: 10.1007/s00285-009-0317-0.

[18]

M. Meyries, Local well posedness and instability of travelling waves in a chemotaxis model, Adv. Differential Equations, 16 (2011), 31-60.

[19]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms, Interfaces Free Bound., 10 (2008), 517-538. doi: 10.4171/IFB/200.

[20]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184. doi: 10.1007/BF00160334.

[21]

, National Cancer Institute, http://www.web-books.com/eLibrary/ON/B0/B15/TOC.html.

[22]

R. Nossal, Boundary movement of chemotactic bacterial population, Math. Biosci., 13 (1972), 397-406. doi: 10.1016/0025-5564(72)90058-2.

[23]

C. H. Ou and W. Yuan, Traveling wavefronts in a volume-filling chemotaxis model, SIAM Appl. Dyn. Sys., 8 (2009), 390-416. doi: 10.1137/08072797X.

[24]

K. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.

[25]

G. Rosen, Analytically solution to the initial-value problem for traveling bands of chemotaxis bacteria, J. Theor. Biol., 49 (1975), 311-321.

[26]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674. doi: 10.1007/BF02460738.

[27]

G. Rosen, Theoretical significance of the condition $\delta=2 \mu$ in bacterical chemotaxis, Bull. Math. Biol., 45 (1983), 151-153.

[28]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria, Math. Biosci., 24 (1975), 273-279. doi: 10.1016/0025-5564(75)90080-2.

[29]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478. doi: 10.1002/pamm.200310508.

[30]

Y. S. Tao, L. H. Wang and Z. A. Wang, Long-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Cont. Dyn. Syst.-Seris B, 18 (2013), 821-845. doi: 10.3934/dcdsb.2013.18.821.

[31]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptoaxis model, SIAM J. Math. Anal., 38 (2006), 1694-1713. doi: 10.1137/060655122.

[32]

Z. A. Wang, Wavefront of an angiogenesis model, Discrete Cont. Dyn. Syst.-Series B, 17 (2012), 2849-2860. doi: 10.3934/dcdsb.2012.17.2849.

[33]

Z. A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 037108, 13 pp. doi: 10.1063/1.2766864.

[34]

Z. A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70. doi: 10.1002/mma.898.

[35]

C. Xue, H. J. Hwang, K. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733. doi: 10.1007/s11538-010-9586-4.

show all references

References:
[1]

J. Adler, Chemotaxis in bacteria, Annual Review of Biochemistry, 44 (1975), 341-356. doi: 10.1146/annurev.bi.44.070175.002013.

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597. doi: 10.1126/science.166.3913.1588.

[3]

F. S. Berezovskaya, A. S. Novozhilov and G. P. Karev, Families of traveling impulse and fronts in some models with cross-diffusion, Nonlinear Analysis: Real World applications, 9 (2008), 1866-1881. doi: 10.1016/j.nonrwa.2007.06.001.

[4]

M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumors: The mathamatical modeling of the stages of tumor development, Math. Comput. Modeling, 23 (1996), 47-87.

[5]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146. doi: 10.1016/S1631-073X(02)00008-0.

[6]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan j. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x.

[7]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355. doi: 10.1137/S0036141001385046.

[8]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model, Interfaces Free Bound., 8 (2006), 223-245. doi: 10.4171/IFB/141.

[9]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25. doi: 10.1007/s00332-003-0548-y.

[10]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis, J. Theor. Biol., 30 (1971), 235-248. doi: 10.1016/0022-5193(71)90051-8.

[11]

H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42 (2001), 195-238. doi: 10.1007/s002850000037.

[12]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730. doi: 10.1137/S0036139995291106.

[13]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650. doi: 10.1142/S0218202511005519.

[14]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443. doi: 10.1137/110829453.

[15]

T. Li and Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541. doi: 10.1137/09075161X.

[16]

T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333. doi: 10.1016/j.jde.2010.09.020.

[17]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-761. doi: 10.1007/s00285-009-0317-0.

[18]

M. Meyries, Local well posedness and instability of travelling waves in a chemotaxis model, Adv. Differential Equations, 16 (2011), 31-60.

[19]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms, Interfaces Free Bound., 10 (2008), 517-538. doi: 10.4171/IFB/200.

[20]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184. doi: 10.1007/BF00160334.

[21]

, National Cancer Institute, http://www.web-books.com/eLibrary/ON/B0/B15/TOC.html.

[22]

R. Nossal, Boundary movement of chemotactic bacterial population, Math. Biosci., 13 (1972), 397-406. doi: 10.1016/0025-5564(72)90058-2.

[23]

C. H. Ou and W. Yuan, Traveling wavefronts in a volume-filling chemotaxis model, SIAM Appl. Dyn. Sys., 8 (2009), 390-416. doi: 10.1137/08072797X.

[24]

K. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.

[25]

G. Rosen, Analytically solution to the initial-value problem for traveling bands of chemotaxis bacteria, J. Theor. Biol., 49 (1975), 311-321.

[26]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674. doi: 10.1007/BF02460738.

[27]

G. Rosen, Theoretical significance of the condition $\delta=2 \mu$ in bacterical chemotaxis, Bull. Math. Biol., 45 (1983), 151-153.

[28]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria, Math. Biosci., 24 (1975), 273-279. doi: 10.1016/0025-5564(75)90080-2.

[29]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478. doi: 10.1002/pamm.200310508.

[30]

Y. S. Tao, L. H. Wang and Z. A. Wang, Long-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Cont. Dyn. Syst.-Seris B, 18 (2013), 821-845. doi: 10.3934/dcdsb.2013.18.821.

[31]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptoaxis model, SIAM J. Math. Anal., 38 (2006), 1694-1713. doi: 10.1137/060655122.

[32]

Z. A. Wang, Wavefront of an angiogenesis model, Discrete Cont. Dyn. Syst.-Series B, 17 (2012), 2849-2860. doi: 10.3934/dcdsb.2012.17.2849.

[33]

Z. A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 037108, 13 pp. doi: 10.1063/1.2766864.

[34]

Z. A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70. doi: 10.1002/mma.898.

[35]

C. Xue, H. J. Hwang, K. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733. doi: 10.1007/s11538-010-9586-4.

[1]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[2]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[3]

Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147

[4]

Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences & Engineering, 2007, 4 (2) : 187-203. doi: 10.3934/mbe.2007.4.187

[5]

Anouar El Harrak, Amal Bergam, Tri Nguyen-Huu, Pierre Auger, Rachid Mchich. Application of aggregation of variables methods to a class of two-time reaction-diffusion-chemotaxis models of spatially structured populations with constant diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2163-2181. doi: 10.3934/dcdss.2021055

[6]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[7]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[8]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[9]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[10]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[11]

Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1859-1870. doi: 10.3934/dcdsb.2020006

[12]

Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[15]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[16]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[17]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[18]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[19]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[20]

Matthew S. Mizuhara, Peng Zhang. Uniqueness and traveling waves in a cell motility model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2811-2835. doi: 10.3934/dcdsb.2018315

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (122)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]