June  2015, 20(4): 1189-1212. doi: 10.3934/dcdsb.2015.20.1189

A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations

1. 

School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China

Received  October 2012 Revised  July 2014 Published  February 2015

In this article, we employ proper orthogonal decomposition (POD) technique to establish a POD-based reduced-order stabilized mixed finite volume element (SMFVE) extrapolation algorithm based on two local Gaussian integrals, parameter-free, and Crank-Nicolson (CN) method with fewer degrees of freedom for the non-stationary Navier-Stokes equations. The error estimates between the POD-based reduced-order SMFVE solutions and the classical SMFVE solutions and the implementation for the POD-based reduced-order SMFVE extrapolation algorithm are provided. A numerical example is used to illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the POD-based reduced-order SMFVE extrapolation algorithm is feasible and efficient for finding numerical solutions for the non-stationary Navier-Stokes equations.
Citation: Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

D. Ahlman, F. Södelundon, J. Jackson, A. Kurdila and W. Shyy, Proper orthogonal decomposition for time-dependent lid-driven cavity flows,, Numer. Heat Trans. Part B-Fund., 42 (2002), 285.  doi: 10.1080/10407790190053950.  Google Scholar

[3]

I. Ammara and C. Masson, Development of a fully coupled control-volume finite element method for the incompressible Navier-Stokes equations,, International Journal for Numerical Methods in Fluids, 44 (2004), 621.  doi: 10.1002/fld.662.  Google Scholar

[4]

J. An, P. Sun, Z. D. Luo and X. M. Huang, A stabilized fully discrete finite volume element formulation for non-stationary Stokes equations,, Math. Numer. Sin., 33 (2011), 213.   Google Scholar

[5]

R. E. Bank and D. J. Rose, Some error estimates for the box methods,, SIAM Journal on Numerical Analysis, 24 (1987), 777.  doi: 10.1137/0724050.  Google Scholar

[6]

M. Bergmann, C. H. Bruneau and A. Iollo, Enablers for robust POD models,, Journal of Computational Physics, 228 (2009), 516.  doi: 10.1016/j.jcp.2008.09.024.  Google Scholar

[7]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[8]

Z. Cai and S. McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grid,, SIAM Journal on Numerical Analysis, 27 (1990), 636.  doi: 10.1137/0727039.  Google Scholar

[9]

J. R. Cannon and Y. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory,, SIAM Journal on Numerical Analysis, 27 (1990), 595.  doi: 10.1137/0727036.  Google Scholar

[10]

S. H. Chou and D. Y. Kwak, A covolume method based on rotated bilinears for the generalized Stokes problem,, SIAM Journal on Numerical Analysis, 35 (1998), 494.  doi: 10.1137/S0036142996299964.  Google Scholar

[11]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[12]

A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis and S. A. Orsag, Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinder,, Physics of Fluids A, 3 (1991), 2337.  doi: 10.1063/1.857881.  Google Scholar

[13]

K. Fukunaga, Introduction to Statistical Recognition,, Academic Press, (1990).   Google Scholar

[14]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms,, Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[15]

G. He and Y. N. He, The finite volume method based on stabilized finite element for the stationary Navier-Stokes equations,, Journal of Computational and Applied Mathematics, 205 (2007), 651.  doi: 10.1016/j.cam.2006.07.007.  Google Scholar

[16]

G. He, Y. N. He and X. L. Feng, Finite volume method based on stabilized finite elements for the nonstationary Navier-Stokes problem,, Numerical Methods for Partial Differential Equations, 23 (2007), 1167.  doi: 10.1002/num.20216.  Google Scholar

[17]

J. G. Heywood and R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem, I. Regularity of solutions and second order estimates for spatial discretization,, SIAM Journal on Numerical Analysis, 19 (1982), 275.  doi: 10.1137/0719018.  Google Scholar

[18]

J. G. Heywood and R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem part IV: error analysis for second-order time discretization,, SIAM Journal on Numerical Analysis, 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar

[19]

P. Holmes, J. L. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511622700.  Google Scholar

[20]

I. T. Jolliffe, Principal Component Analysis,, Springer-Verlag, (2002).   Google Scholar

[21]

W. P. Jones and K. R. Menziest, Analysis of the cell-centred finite volume method for the diffusion equation,, Journal of Computational Physics, 165 (2000), 45.  doi: 10.1006/jcph.2000.6595.  Google Scholar

[22]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems,, Numer. Math., 90 (2001), 117.  doi: 10.1007/s002110100282.  Google Scholar

[23]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics,, SIAM J. Numer. Anal., 40 (2002), 492.  doi: 10.1137/S0036142900382612.  Google Scholar

[24]

K. Kunisch and S. Volkwein, Control of Burgers's equation by a reduced order approach using proper orthogonal decomposition,, J. Optim. Theory Appl., 102 (1999), 345.  doi: 10.1023/A:1021732508059.  Google Scholar

[25]

J. Li and Z. X. Chen, A new stabilized finite volume method for the stationary Stokes equations,, Adv. Comput. Math., 30 (2009), 141.  doi: 10.1007/s10444-007-9060-5.  Google Scholar

[26]

R. H. Li, Z. Y. Chen and W. Wu, Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods,, Monographs and Textbooks in Pure and Applied Mathematics 226, (2000).   Google Scholar

[27]

H. Li and Z. D. Luo, A fully-discrete stabilized finite volume element formulation and error analysis based on the Crank-Nicolson method of time discretization for the non-stationary Navier-Stokes equations,, Applied Numerical Mathematics, ().   Google Scholar

[28]

H. R. Li, Z. D. Luo and J. Chen, Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problems,, Applied Mathematical Modelling, 35 (2011), 2489.  doi: 10.1016/j.apm.2010.11.064.  Google Scholar

[29]

H. R. Li, Z. D. Luo and Q. Li, Generalized difference methods for two-dimensional viscoelastic problems,, Chinese J. Numer. Math. Appl., 29 (2007), 251.  doi: 10.1063/1.2744281.  Google Scholar

[30]

H. Li, Z. D. Luo, P. Sun and J. An, A finite volume element formulation and error analysis for the non-stationary conduction-convection problem,, Journal of Mathematical Analysis and Applications, 396 (2012), 864.  doi: 10.1016/j.jmaa.2012.07.046.  Google Scholar

[31]

J. Li, L. H. Shen and Z. X. Chen, Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations,, BIT Numerical Mathematics, 50 (2010), 823.  doi: 10.1007/s10543-010-0277-1.  Google Scholar

[32]

Z. D. Luo, The foundations and Applications of Mixed Finite Element Methods (in Chinese),, Chinese Science Press, (2006).   Google Scholar

[33]

Z. D. Luo, J. Chen, I. M. Navon and X. Z. Yang, Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations,, SIAM Journal on Numerical Analysis, 47 (2008), 1.  doi: 10.1137/070689498.  Google Scholar

[34]

Z. D. Luo, J. Chen, I. M. Navon and J. Zhu, An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems,, International Journal for Numerical Methods in Fluid, 60 (2009), 409.  doi: 10.1002/fld.1900.  Google Scholar

[35]

Z. D. Luo, J. Chen, P. Sun and X. Z. Yang, Finite element formulation based on proper orthogonal decomposition for parabolic equations,, Science in China Series A: Mathematics, 52 (2009), 585.  doi: 10.1007/s11425-008-0125-9.  Google Scholar

[36]

Z. D. Luo, J. Chen, Z. H. Xie, J. An and P. Sun, A reduced second-order time accurate finite element formulation based on POD for parabolic equations (in Chinese),, Sci. Sin. Math., 41 (2011), 447.   Google Scholar

[37]

Z. D. Luo, J. Du, Z. H. Xie and Y. Guo, A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations,, International Journal for Numerical Methods in Engineering, 88 (2011), 31.  doi: 10.1002/nme.3161.  Google Scholar

[38]

Z. D. Luo, H. Li, Y. Q. Shang and Z. Fang, A LSMFE formulation based on proper orthogonal decomposition for parabolic equations,, Finite Elements in Analysis and Design, 60 (2012), 1.  doi: 10.1016/j.finel.2012.05.002.  Google Scholar

[39]

Z. D. Luo, H. Li, Y. J. Zhou and X. M. Huang, A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem,, Journal of Mathematical Analysis and Applications, 385 (2012), 310.  doi: 10.1016/j.jmaa.2011.06.057.  Google Scholar

[40]

Z. D. Luo, H. Li, Y. J. Zhou and Z. H. Xie, A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems,, Journal of Mathematical Analysis and Applications, 385 (2012), 371.  doi: 10.1016/j.jmaa.2011.06.051.  Google Scholar

[41]

Z. D. Luo, Z. H. Xie and J. Chen, A reduced MFE formulation based on POD for the non-stationary conduction-convection problems,, Acta Mathematica Scientia, 31 (2011), 1765.  doi: 10.1016/S0252-9602(11)60360-3.  Google Scholar

[42]

Z. D. Luo, Z. H. Xie, Y. Q. Shang and J. Chen, A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations,, Journal of Computational and Applied Mathematics, 235 (2011), 2098.  doi: 10.1016/j.cam.2010.10.008.  Google Scholar

[43]

Z. D. Luo, Y. J. Zhou and X. Z. Yang, A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation,, Applied Numerical Mathematics, 59 (2009), 1933.  doi: 10.1016/j.apnum.2008.12.034.  Google Scholar

[44]

Z. D. Luo, J. Zhu, R. W. Wang and I. M. Navon, Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model,, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 4184.  doi: 10.1016/j.cma.2007.04.003.  Google Scholar

[45]

H. V. Ly and H. T. Tran, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor,, Quart. Appl. Math., 60 (2002), 631.   Google Scholar

[46]

X. Ma and G. E. Karniadakis, A low-dimensional model for simulating three-dimensional cylinder flow,, Journal of Fluid Mechanics, 458 (2002), 181.  doi: 10.1017/S0022112002007991.  Google Scholar

[47]

W. Rudin, Functional and Analysis,, $2^{nd}$ edition, (1973).   Google Scholar

[48]

L. H. Shen, J. Li and Z. X. Chen, Analysis of a stabilized finite volume method for the transient Stokes equations,, International Journal of Numerical Analysis and Modeling, 6 (2009), 505.   Google Scholar

[49]

E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes,, SIAM Journal on Numerical Analysis, 28 (1991), 1419.  doi: 10.1137/0728073.  Google Scholar

[50]

R. Temam, Navier-Stokes Equations,, $3^{rd}$ edition, (1984).   Google Scholar

[51]

Z. Wang, I. Akhtar, J. Borggaard and T. Iliescu, Two-level discretizations of non-linear closure models for proper orthogonal decomposition,, Journal of Computational Physics, 230 (2011), 126.  doi: 10.1016/j.jcp.2010.09.015.  Google Scholar

[52]

M. Yang and H. L. Song, A postprocessing finite volume method for time-dependent Stokes equations,, Applied Numerical Mathematics, 59 (2009), 1922.  doi: 10.1016/j.apnum.2009.02.004.  Google Scholar

[53]

X. Ye, On the relation between finite volume and finite element methods applied to the Stokes equations,, Numerical Methods for Partial Differential Equations, 17 (2001), 440.  doi: 10.1002/num.1021.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

D. Ahlman, F. Södelundon, J. Jackson, A. Kurdila and W. Shyy, Proper orthogonal decomposition for time-dependent lid-driven cavity flows,, Numer. Heat Trans. Part B-Fund., 42 (2002), 285.  doi: 10.1080/10407790190053950.  Google Scholar

[3]

I. Ammara and C. Masson, Development of a fully coupled control-volume finite element method for the incompressible Navier-Stokes equations,, International Journal for Numerical Methods in Fluids, 44 (2004), 621.  doi: 10.1002/fld.662.  Google Scholar

[4]

J. An, P. Sun, Z. D. Luo and X. M. Huang, A stabilized fully discrete finite volume element formulation for non-stationary Stokes equations,, Math. Numer. Sin., 33 (2011), 213.   Google Scholar

[5]

R. E. Bank and D. J. Rose, Some error estimates for the box methods,, SIAM Journal on Numerical Analysis, 24 (1987), 777.  doi: 10.1137/0724050.  Google Scholar

[6]

M. Bergmann, C. H. Bruneau and A. Iollo, Enablers for robust POD models,, Journal of Computational Physics, 228 (2009), 516.  doi: 10.1016/j.jcp.2008.09.024.  Google Scholar

[7]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[8]

Z. Cai and S. McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grid,, SIAM Journal on Numerical Analysis, 27 (1990), 636.  doi: 10.1137/0727039.  Google Scholar

[9]

J. R. Cannon and Y. Lin, A priori $L^2$ error estimates for finite-element methods for nonlinear diffusion equations with memory,, SIAM Journal on Numerical Analysis, 27 (1990), 595.  doi: 10.1137/0727036.  Google Scholar

[10]

S. H. Chou and D. Y. Kwak, A covolume method based on rotated bilinears for the generalized Stokes problem,, SIAM Journal on Numerical Analysis, 35 (1998), 494.  doi: 10.1137/S0036142996299964.  Google Scholar

[11]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[12]

A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis and S. A. Orsag, Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinder,, Physics of Fluids A, 3 (1991), 2337.  doi: 10.1063/1.857881.  Google Scholar

[13]

K. Fukunaga, Introduction to Statistical Recognition,, Academic Press, (1990).   Google Scholar

[14]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms,, Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[15]

G. He and Y. N. He, The finite volume method based on stabilized finite element for the stationary Navier-Stokes equations,, Journal of Computational and Applied Mathematics, 205 (2007), 651.  doi: 10.1016/j.cam.2006.07.007.  Google Scholar

[16]

G. He, Y. N. He and X. L. Feng, Finite volume method based on stabilized finite elements for the nonstationary Navier-Stokes problem,, Numerical Methods for Partial Differential Equations, 23 (2007), 1167.  doi: 10.1002/num.20216.  Google Scholar

[17]

J. G. Heywood and R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem, I. Regularity of solutions and second order estimates for spatial discretization,, SIAM Journal on Numerical Analysis, 19 (1982), 275.  doi: 10.1137/0719018.  Google Scholar

[18]

J. G. Heywood and R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem part IV: error analysis for second-order time discretization,, SIAM Journal on Numerical Analysis, 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar

[19]

P. Holmes, J. L. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511622700.  Google Scholar

[20]

I. T. Jolliffe, Principal Component Analysis,, Springer-Verlag, (2002).   Google Scholar

[21]

W. P. Jones and K. R. Menziest, Analysis of the cell-centred finite volume method for the diffusion equation,, Journal of Computational Physics, 165 (2000), 45.  doi: 10.1006/jcph.2000.6595.  Google Scholar

[22]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems,, Numer. Math., 90 (2001), 117.  doi: 10.1007/s002110100282.  Google Scholar

[23]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics,, SIAM J. Numer. Anal., 40 (2002), 492.  doi: 10.1137/S0036142900382612.  Google Scholar

[24]

K. Kunisch and S. Volkwein, Control of Burgers's equation by a reduced order approach using proper orthogonal decomposition,, J. Optim. Theory Appl., 102 (1999), 345.  doi: 10.1023/A:1021732508059.  Google Scholar

[25]

J. Li and Z. X. Chen, A new stabilized finite volume method for the stationary Stokes equations,, Adv. Comput. Math., 30 (2009), 141.  doi: 10.1007/s10444-007-9060-5.  Google Scholar

[26]

R. H. Li, Z. Y. Chen and W. Wu, Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods,, Monographs and Textbooks in Pure and Applied Mathematics 226, (2000).   Google Scholar

[27]

H. Li and Z. D. Luo, A fully-discrete stabilized finite volume element formulation and error analysis based on the Crank-Nicolson method of time discretization for the non-stationary Navier-Stokes equations,, Applied Numerical Mathematics, ().   Google Scholar

[28]

H. R. Li, Z. D. Luo and J. Chen, Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problems,, Applied Mathematical Modelling, 35 (2011), 2489.  doi: 10.1016/j.apm.2010.11.064.  Google Scholar

[29]

H. R. Li, Z. D. Luo and Q. Li, Generalized difference methods for two-dimensional viscoelastic problems,, Chinese J. Numer. Math. Appl., 29 (2007), 251.  doi: 10.1063/1.2744281.  Google Scholar

[30]

H. Li, Z. D. Luo, P. Sun and J. An, A finite volume element formulation and error analysis for the non-stationary conduction-convection problem,, Journal of Mathematical Analysis and Applications, 396 (2012), 864.  doi: 10.1016/j.jmaa.2012.07.046.  Google Scholar

[31]

J. Li, L. H. Shen and Z. X. Chen, Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations,, BIT Numerical Mathematics, 50 (2010), 823.  doi: 10.1007/s10543-010-0277-1.  Google Scholar

[32]

Z. D. Luo, The foundations and Applications of Mixed Finite Element Methods (in Chinese),, Chinese Science Press, (2006).   Google Scholar

[33]

Z. D. Luo, J. Chen, I. M. Navon and X. Z. Yang, Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations,, SIAM Journal on Numerical Analysis, 47 (2008), 1.  doi: 10.1137/070689498.  Google Scholar

[34]

Z. D. Luo, J. Chen, I. M. Navon and J. Zhu, An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems,, International Journal for Numerical Methods in Fluid, 60 (2009), 409.  doi: 10.1002/fld.1900.  Google Scholar

[35]

Z. D. Luo, J. Chen, P. Sun and X. Z. Yang, Finite element formulation based on proper orthogonal decomposition for parabolic equations,, Science in China Series A: Mathematics, 52 (2009), 585.  doi: 10.1007/s11425-008-0125-9.  Google Scholar

[36]

Z. D. Luo, J. Chen, Z. H. Xie, J. An and P. Sun, A reduced second-order time accurate finite element formulation based on POD for parabolic equations (in Chinese),, Sci. Sin. Math., 41 (2011), 447.   Google Scholar

[37]

Z. D. Luo, J. Du, Z. H. Xie and Y. Guo, A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations,, International Journal for Numerical Methods in Engineering, 88 (2011), 31.  doi: 10.1002/nme.3161.  Google Scholar

[38]

Z. D. Luo, H. Li, Y. Q. Shang and Z. Fang, A LSMFE formulation based on proper orthogonal decomposition for parabolic equations,, Finite Elements in Analysis and Design, 60 (2012), 1.  doi: 10.1016/j.finel.2012.05.002.  Google Scholar

[39]

Z. D. Luo, H. Li, Y. J. Zhou and X. M. Huang, A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem,, Journal of Mathematical Analysis and Applications, 385 (2012), 310.  doi: 10.1016/j.jmaa.2011.06.057.  Google Scholar

[40]

Z. D. Luo, H. Li, Y. J. Zhou and Z. H. Xie, A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems,, Journal of Mathematical Analysis and Applications, 385 (2012), 371.  doi: 10.1016/j.jmaa.2011.06.051.  Google Scholar

[41]

Z. D. Luo, Z. H. Xie and J. Chen, A reduced MFE formulation based on POD for the non-stationary conduction-convection problems,, Acta Mathematica Scientia, 31 (2011), 1765.  doi: 10.1016/S0252-9602(11)60360-3.  Google Scholar

[42]

Z. D. Luo, Z. H. Xie, Y. Q. Shang and J. Chen, A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations,, Journal of Computational and Applied Mathematics, 235 (2011), 2098.  doi: 10.1016/j.cam.2010.10.008.  Google Scholar

[43]

Z. D. Luo, Y. J. Zhou and X. Z. Yang, A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation,, Applied Numerical Mathematics, 59 (2009), 1933.  doi: 10.1016/j.apnum.2008.12.034.  Google Scholar

[44]

Z. D. Luo, J. Zhu, R. W. Wang and I. M. Navon, Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model,, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 4184.  doi: 10.1016/j.cma.2007.04.003.  Google Scholar

[45]

H. V. Ly and H. T. Tran, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor,, Quart. Appl. Math., 60 (2002), 631.   Google Scholar

[46]

X. Ma and G. E. Karniadakis, A low-dimensional model for simulating three-dimensional cylinder flow,, Journal of Fluid Mechanics, 458 (2002), 181.  doi: 10.1017/S0022112002007991.  Google Scholar

[47]

W. Rudin, Functional and Analysis,, $2^{nd}$ edition, (1973).   Google Scholar

[48]

L. H. Shen, J. Li and Z. X. Chen, Analysis of a stabilized finite volume method for the transient Stokes equations,, International Journal of Numerical Analysis and Modeling, 6 (2009), 505.   Google Scholar

[49]

E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes,, SIAM Journal on Numerical Analysis, 28 (1991), 1419.  doi: 10.1137/0728073.  Google Scholar

[50]

R. Temam, Navier-Stokes Equations,, $3^{rd}$ edition, (1984).   Google Scholar

[51]

Z. Wang, I. Akhtar, J. Borggaard and T. Iliescu, Two-level discretizations of non-linear closure models for proper orthogonal decomposition,, Journal of Computational Physics, 230 (2011), 126.  doi: 10.1016/j.jcp.2010.09.015.  Google Scholar

[52]

M. Yang and H. L. Song, A postprocessing finite volume method for time-dependent Stokes equations,, Applied Numerical Mathematics, 59 (2009), 1922.  doi: 10.1016/j.apnum.2009.02.004.  Google Scholar

[53]

X. Ye, On the relation between finite volume and finite element methods applied to the Stokes equations,, Numerical Methods for Partial Differential Equations, 17 (2001), 440.  doi: 10.1002/num.1021.  Google Scholar

[1]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[2]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[3]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[4]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[5]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[6]

Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027

[7]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[8]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[9]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[10]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[11]

Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109

[12]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[13]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[14]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[15]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[16]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[17]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

[18]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[19]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[20]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]