\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pullback attractors for a class of nonlinear lattices with delays

Abstract / Introduction Related Papers Cited by
  • We consider a class of nonlinear delay lattices $$ \ddot{u}_i(t)+(-1)^p\triangle^pu_i(t)+\lambda u_i(t)+\dot{u}_i(t)=h_i(u_i(t-\rho(t)))+f_i(t),~~~i \in \mathbb{Z}, $$ where $\lambda$ is a real positive constant, $p$ is any positive integer and $\triangle$ is the discrete one-dimensional Laplace operator. Under suitable conditions on $h$ and $f$ we prove the existence of pullback attractors for the multi-valued process associated with the system for which the uniqueness of solutions need not hold.
    Mathematics Subject Classification: 34K05, 34K31, 35B40, 35B41, 35L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.doi: 10.1016/j.jde.2003.09.008.

    [2]

    T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.doi: 10.3934/dcds.2008.21.415.

    [3]

    T. Caraballo and P. E. Kloeden, Non-autonomous attractors for integro-differential evolution equations, Discrete Contin. Dyn. Syst., 2 (2009), 17-36.doi: 10.3934/dcdss.2009.2.17.

    [4]

    T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.doi: 10.1016/j.jde.2012.03.020.

    [5]

    F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.doi: 10.1080/17442509608834083.

    [6]

    J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.doi: 10.1007/978-1-4612-4342-7.

    [7]

    J. C. Oliveira and J. M. Pereira, Global attractor for a class of nonlinear lattices, J. Math. Anal. Appl., 370 (2010), 726-739.doi: 10.1016/j.jmaa.2010.04.074.

    [8]

    P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delay in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006.doi: 10.3934/dcds.2010.26.989.

    [9]

    B. X. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.doi: 10.1016/j.jde.2012.05.015.

    [10]

    Y. J. Wang and S. F. Zhou, Kernel sections of multi-valued processes with application to the nonlinear reaction-diffusion equations in unbounded domains, Quart. Applied Math., 67 (2009), 343-378.

    [11]

    Y. J. Wang and P. E. Kloeden, The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain, Discrete Contin. Dyn. Syst., 34 (2014), 4343-4370.doi: 10.3934/dcds.2014.34.4343.

    [12]

    C. D. Zhao, S. F. Zhou and W. M. Wang, Compact kernel sections for lattice systems with delays, Nonlinear Analysis TMA, 70 (2009), 1330-1348.doi: 10.1016/j.na.2008.02.015.

    [13]

    S. F. Zhou, Attractors for second-order lattice dynamical systems with damping, J. Math. Phys., 43 (2002), 452-465.doi: 10.1063/1.1418719.

    [14]

    S. F. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.doi: 10.1016/j.jde.2004.02.005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return