Citation: |
[1] |
V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov and G. A. Leonov, Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits, J. Comput. Syst. Sci. Int., 50 (2011), 511-543.doi: 10.1134/S106423071104006X. |
[2] |
T. Gheorghe and C. Dana, Heteroclinic orbits in the T and the Lu systems, Chaos Solitons Fractals, 42 (2009), 20-23.doi: 10.1016/j.chaos.2008.10.024. |
[3] |
T. Gheorghe and O. Dumitru, Analysis of a 3D chaotic system, Chaos Solitons Fractals, 36 (2008), 1315-1319.doi: 10.1016/j.chaos.2006.07.052. |
[4] |
B. Jiang, X. J. Han and Q. S. Bi, Hopf bifurcation analysis in the T system, Nonlinear Anal., Real World Appl., 11 (2010), 522-527.doi: 10.1016/j.nonrwa.2009.01.007. |
[5] |
G. A. Leonov, Lyapunov dimension formulas for Henon and Lorenz attractors, St Petersburg Math. J., 13 (2001), 155-170. |
[6] |
G. A. Leonov, Bound for attractors and the existence of homoclinic orbit in the Lorenz system, J. Appl. Math. Mech., 65 (2001), 19-32.doi: 10.1016/S0021-8928(01)00004-1. |
[7] |
G. A. Leonov, Localization of the attractors of the non-autonomous Lienard equation by the method of discontinuous comparison systems, J. Appl. Maths Mechs, 60 (1996), 329-332.doi: 10.1016/0021-8928(96)00042-1. |
[8] |
G. A. Leonov, A. I. Bunin and N. Koksch, Attractor localization of the Lorenz system, Z.Angew. Math. Mech., 67 (1987), 649-656.doi: 10.1002/zamm.19870671215. |
[9] |
X. F. Li, Y. D. Chu, J. G. Zhang and Y. X. Chang, Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor, Chaos Solitons Fractals, 41 (2009), 2360-2370.doi: 10.1016/j.chaos.2008.09.011. |
[10] |
X. X. Liao, Y. L. Fu and S. L. Xie, On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization, Sci. China Ser.F Inform. Sci., 48 (2005), 304-321.doi: 10.1360/04yf0087. |
[11] |
G. A. Leonov and N. V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1330002, 69pp.doi: 10.1142/S0218127413300024. |
[12] |
G. A. Leonov, N. V. Kuznetsov and V. I. Vagaitsev, Hidden attractor in smooth Chua systems, Physica D, 241 (2012), 1482-1486.doi: 10.1016/j.physd.2012.05.016. |
[13] |
G. A. Leonov, N. V. Kuznetsov and V. I. Vagaitsev, Localization of hidden Chua's attractors, Phys. Lett. A, 375 (2011), 2230-2233.doi: 10.1016/j.physleta.2011.04.037. |
[14] |
L. Liu, C. X. Liu and Y. B. Zhang, Experimental confirmation of a modified Lorenz system, Chinese Physics Letters, 24 (2007), 2756-2758. |
[15] |
G. A. Leonov, D. V. Ponomarenko and V. B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis, Theory and applications. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 9. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.doi: 10.1142/9789812798695. |
[16] |
G. A. Leonov, D. V. Ponomarenko and V. B. Smirnova, Local instability and Localization of attractors. From stochastic generator to Chua's systems, Acta Appl. Math., 40 (1995), 179-243.doi: 10.1007/BF00992721. |
[17] |
Y. J. Liu and Q. G. Yang, Dynamics of a new Lorenz-like chaotic system, Nonlinear Anal., Real World Appl., 11 (2010), 2563-2572.doi: 10.1016/j.nonrwa.2009.09.001. |
[18] |
A. Y. Pogromsky, G, Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications, Nonlinearity, 16 (2003), 1597-1605.doi: 10.1088/0951-7715/16/5/303. |
[19] |
A. Y. Pogromsky and H. Nijmeijer, On estimates of the Hausdorff dimension of invariant compact sets, Nonlinearity, 13 (2000), 927-945.doi: 10.1088/0951-7715/13/3/324. |
[20] |
P. Yu and X. X. Liao, Globally attractive and positive invariant set of the Lorenz system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 757-764.doi: 10.1142/S0218127406015143. |
[21] |
Q. G. Yang and Y. J. Liu, A hyperchaotic system from a chaotic system with one saddle and two stable node-foci, J. Math. Appl., 360 (2009), 293-306.doi: 10.1016/j.jmaa.2009.06.051. |
[22] |
F. C. Zhang, Y. L. Shu and H. L. Yang, Bounds for a new chaotic system and its application in chaos synchronization, Commun. Nonlin. Sci. Numer. Simulat., 16 (2011), 1501-1508.doi: 10.1016/j.cnsns.2010.05.032. |