June  2015, 20(4): 1277-1295. doi: 10.3934/dcdsb.2015.20.1277

The threshold of a stochastic SIRS epidemic model in a population with varying size

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, Jilin, China

2. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024

3. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, United Kingdom

Received  August 2013 Revised  February 2014 Published  February 2015

In this paper, a stochastic susceptible-infected-removed-susceptible (SIRS) epidemic model in a population with varying size is discussed. A new threshold $\tilde{R}_0$ is identified which determines the outcome of the disease. When the noise is small, if $\tilde{R}_0<1$, the infected proportion of the population disappears, so the disease dies out, whereas if $\tilde{R}_0>1$, the infected proportion persists in the mean and we derive that the disease is endemic. Furthermore, when ${R}_0 > 1$ and subject to a condition on some of the model parameters, we show that the solution of the stochastic model oscillates around the endemic equilibrium of the corresponding deterministic system with threshold ${R}_0$, and the intensity of fluctuation is proportional to that of the white noise. On the other hand, when the noise is large, we find that a large noise intensity has the effect of suppressing the epidemic, so that it dies out. These results are illustrated by computer simulations.
Citation: Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1277-1295. doi: 10.3934/dcdsb.2015.20.1277
References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases I,, Nature, 280 (1979), 361.  doi: 10.1038/280361a0.  Google Scholar

[2]

R. M. Anderson and R. M. May, Population biology of infectious diseases II,, Nature, 280 (1979), 455.   Google Scholar

[3]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts,, Philos. Trans. R. Soc. Lond. B, 291 (1981), 451.  doi: 10.1098/rstb.1981.0005.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability,, Nonlinearity, 18 (2005), 913.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

S. Busenberg, K. L. Cooke and M. A. Pozio, Analysis of a model of a vertically transmitted disease,, J. Math. Biol., 17 (1983), 305.  doi: 10.1007/BF00276519.  Google Scholar

[6]

S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size,, J. Math. Biol., 28 (1990), 257.  doi: 10.1007/BF00178776.  Google Scholar

[7]

S. Busenberg, K. L. Cooke and H. Thieme, Demographic change and persistence of HIV/AIDS in a heterogeneous population,, SIAM J. Appl. Math., 51 (1991), 1030.  doi: 10.1137/0151052.  Google Scholar

[8]

M. Carletti, K. Burrage and P. M. Burrage, Numerical simulation of stochastic ordinary differential equations in biomathematical modelling,, Math. Comput. Simulation, 64 (2004), 271.  doi: 10.1016/j.matcom.2003.09.022.  Google Scholar

[9]

N. Dalal, D. Greenhalgh and X. Mao, A stochastic model of AIDS and condom use,, J. Math. Anal. Appl., 325 (2007), 36.  doi: 10.1016/j.jmaa.2006.01.055.  Google Scholar

[10]

M. Fan, M. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size,, Math. Biosciences, 170 (2001), 199.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[11]

A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model,, SIAM J. Appl. Math., 71 (2011), 876.  doi: 10.1137/10081856X.  Google Scholar

[12]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations,, SIAM Review, 43 (2001), 525.  doi: 10.1137/S0036144500378302.  Google Scholar

[13]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, The behavior of an SIR epidemic model with stochastic perturbation,, Stochastic Anal. Appl., 30 (2012), 755.  doi: 10.1080/07362994.2012.684319.  Google Scholar

[14]

X. Mao, Stochastic Differential Equations and Applications,, $2^{nd}$ edition, (2008).  doi: 10.1533/9780857099402.  Google Scholar

[15]

M. Martcheva and C. Castillo-Chavez, Diseases with chronic stage in a population with varying size,, Math. Biosciences, 182 (2003), 1.  doi: 10.1016/S0025-5564(02)00184-0.  Google Scholar

[16]

R. M. May, R. M. Anderson and A. R. Mclean, Possible demographic consequences of HIV/AIDS epidemics. I. assuming HIV infection always leads to AIDS,, Math. Biosciences, 90 (1988), 475.  doi: 10.1016/0025-5564(88)90079-X.  Google Scholar

[17]

C. J. Sun and Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination,, Applied Mathematical Modelling, 34 (2010), 2685.  doi: 10.1016/j.apm.2009.12.005.  Google Scholar

[18]

E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system,, Physica A, 354 (2005), 111.  doi: 10.1016/j.physa.2005.02.057.  Google Scholar

[19]

C. Vargas-De-Leon, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence,, Chaos, 44 (2011), 1106.  doi: 10.1016/j.chaos.2011.09.002.  Google Scholar

[20]

Q. Yang and X. Mao, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations,, Nonlinear Anal. RWA, 14 (2013), 1434.  doi: 10.1016/j.nonrwa.2012.10.007.  Google Scholar

[21]

Y. Zhao and D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence,, Applied Mathematical Letter, 34 (2014), 90.  doi: 10.1016/j.aml.2013.11.002.  Google Scholar

[22]

Y. Zhao, D. Jiang and D. O'Regan, The extinction and persistence of the stochastic SIS epidemic model with vaccination,, Physica A, 392 (2013), 4916.  doi: 10.1016/j.physa.2013.06.009.  Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases I,, Nature, 280 (1979), 361.  doi: 10.1038/280361a0.  Google Scholar

[2]

R. M. Anderson and R. M. May, Population biology of infectious diseases II,, Nature, 280 (1979), 455.   Google Scholar

[3]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts,, Philos. Trans. R. Soc. Lond. B, 291 (1981), 451.  doi: 10.1098/rstb.1981.0005.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability,, Nonlinearity, 18 (2005), 913.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

S. Busenberg, K. L. Cooke and M. A. Pozio, Analysis of a model of a vertically transmitted disease,, J. Math. Biol., 17 (1983), 305.  doi: 10.1007/BF00276519.  Google Scholar

[6]

S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size,, J. Math. Biol., 28 (1990), 257.  doi: 10.1007/BF00178776.  Google Scholar

[7]

S. Busenberg, K. L. Cooke and H. Thieme, Demographic change and persistence of HIV/AIDS in a heterogeneous population,, SIAM J. Appl. Math., 51 (1991), 1030.  doi: 10.1137/0151052.  Google Scholar

[8]

M. Carletti, K. Burrage and P. M. Burrage, Numerical simulation of stochastic ordinary differential equations in biomathematical modelling,, Math. Comput. Simulation, 64 (2004), 271.  doi: 10.1016/j.matcom.2003.09.022.  Google Scholar

[9]

N. Dalal, D. Greenhalgh and X. Mao, A stochastic model of AIDS and condom use,, J. Math. Anal. Appl., 325 (2007), 36.  doi: 10.1016/j.jmaa.2006.01.055.  Google Scholar

[10]

M. Fan, M. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size,, Math. Biosciences, 170 (2001), 199.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[11]

A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model,, SIAM J. Appl. Math., 71 (2011), 876.  doi: 10.1137/10081856X.  Google Scholar

[12]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations,, SIAM Review, 43 (2001), 525.  doi: 10.1137/S0036144500378302.  Google Scholar

[13]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, The behavior of an SIR epidemic model with stochastic perturbation,, Stochastic Anal. Appl., 30 (2012), 755.  doi: 10.1080/07362994.2012.684319.  Google Scholar

[14]

X. Mao, Stochastic Differential Equations and Applications,, $2^{nd}$ edition, (2008).  doi: 10.1533/9780857099402.  Google Scholar

[15]

M. Martcheva and C. Castillo-Chavez, Diseases with chronic stage in a population with varying size,, Math. Biosciences, 182 (2003), 1.  doi: 10.1016/S0025-5564(02)00184-0.  Google Scholar

[16]

R. M. May, R. M. Anderson and A. R. Mclean, Possible demographic consequences of HIV/AIDS epidemics. I. assuming HIV infection always leads to AIDS,, Math. Biosciences, 90 (1988), 475.  doi: 10.1016/0025-5564(88)90079-X.  Google Scholar

[17]

C. J. Sun and Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination,, Applied Mathematical Modelling, 34 (2010), 2685.  doi: 10.1016/j.apm.2009.12.005.  Google Scholar

[18]

E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system,, Physica A, 354 (2005), 111.  doi: 10.1016/j.physa.2005.02.057.  Google Scholar

[19]

C. Vargas-De-Leon, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence,, Chaos, 44 (2011), 1106.  doi: 10.1016/j.chaos.2011.09.002.  Google Scholar

[20]

Q. Yang and X. Mao, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations,, Nonlinear Anal. RWA, 14 (2013), 1434.  doi: 10.1016/j.nonrwa.2012.10.007.  Google Scholar

[21]

Y. Zhao and D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence,, Applied Mathematical Letter, 34 (2014), 90.  doi: 10.1016/j.aml.2013.11.002.  Google Scholar

[22]

Y. Zhao, D. Jiang and D. O'Regan, The extinction and persistence of the stochastic SIS epidemic model with vaccination,, Physica A, 392 (2013), 4916.  doi: 10.1016/j.physa.2013.06.009.  Google Scholar

[1]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[2]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[3]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[8]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[9]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[12]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[13]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[14]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[15]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[16]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[19]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[20]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]