January  2015, 20(1): 129-152. doi: 10.3934/dcdsb.2015.20.129

Quiescent phases and stability in discrete time dynamical systems

1. 

Mathematics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

Received  February 2014 Revised  May 2014 Published  November 2014

We study coupled maps where a map representing an `active phase' is coupled to the identity which represents a `quiescent phase'. The resulting system in double dimension is a natural analogue of differential equations with quiescent phases that have been thoroughly studied. In the continuous time case quiescent phases with equal rates for all components stabilize against the onset of Hopf bifurcations (but not against eigenvalues passing through zero) while unequal rates may induce Hopf bifurcations unless the Jacobian matrix has a `strong stability' property. Here we show that similar effects occur in the discrete time case. In the case of equal rates we determine the exact stability boundary as an algebraic curve of fourth order. It is shown that large quiescence rates may completely inhibit period doubling bifurcations. If the rates are unequal, quiescent phases may destabilize a stationary point. In this case we find (for two components) a notion of `strong stability' for the Jacobian matrix such that the stationary point cannot be excited. Discrete time predator prey models serve as examples for the damping and excitation phenomena.
Citation: Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129
References:
[1]

T. Alarcón and H. J. Jensen, Quiescence, a mechanism for escaping the effects of drug on cell populations, J. Roy. Soc. Interface, 8 (2011), 99-106. doi: 10.1098/rsif.2010.0130.

[2]

O. Arino, E. Sanchez and G. F. Webb, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215 (1997), 499-513. doi: 10.1006/jmaa.1997.5654.

[3]

J. R. Beddington, C. A. Free and J. H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, 255 (1975), 58-60. doi: 10.1038/255058a0.

[4]

L. Bilinsky and K. P. Hadeler, Quiescence stabilizes predator-prey relations, J. Biological Dynamics, 3 (2009), 196-208. doi: 10.1080/17513750802590707.

[5]

C. A. Cobbold, J. Roland and M. A. Lewis, The impact of parasitoid emergence time on host-parasitoid population dynamics, Theoretical Population Biology, 75 (2009), 201-215. doi: 10.1016/j.tpb.2009.02.004.

[6]

J. Dyson, R. Villela-Bressan and G. F. Webb, Asynchronous exponential growth in an age structured population of proliferating and quiescent cells, Mathematical Biosciences, 177-178 (2002), 73-83. doi: 10.1016/S0025-5564(01)00097-9.

[7]

I. Gerstmann and K. P. Hadeler, The discrete Rosenzweig model, Mathematical Biosciences, 98 (1990), 49-72. doi: 10.1016/0025-5564(90)90011-M.

[8]

M. Gyllenberg and G. F. Webb, Age-size structure in populations with quiescence, Mathematical Biosciences 86 (1987), 67-95. doi: 10.1016/0025-5564(87)90064-2.

[9]

M. Gyllenberg and G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, J. of Mathematical Biology, 28 (1990), 671-694. doi: 10.1007/BF00160231.

[10]

K. P. Hadeler, Homogeneous equations with a quiescent phase, Math. Models Natural Phenomena, 3 (2008), 115-125. doi: 10.1051/mmnp:2008044.

[11]

K. P. Hadeler, Quiescent phases and stability, Linear Algebra and its Applications, 428 (2008), 1620-1627. doi: 10.1016/j.laa.2007.10.008.

[12]

K. P. Hadeler, Quiescence, excitability, and heterogeneity in ecological models, J. of Mathematical Biology, 66 (2013), 649-684. doi: 10.1007/s00285-012-0590-1.

[13]

K. P. Hadeler and T. Hillen, Coupled dynamics and quiescent states, in Math Everywhere (eds. G. Aletti, M. Burger, A. Micheletti and D. Morale), Springer, Berlin, 2007, 7-23. doi: 10.1007/978-3-540-44446-6_2.

[14]

K. P. Hadeler, T. Hillen and M. Lewis, Biological modeling with quiescent phases, in Spatial Ecology, (eds. C. Cosner and S. Cantrell and S. Ruan), Taylor and Francis, 2009, chapter 5.

[15]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Canadian Applied Mathematics Quarterly, 10 (2002), 473-499.

[16]

K. P. Hadeler and F. Lutscher, Quiescent phases with distributed exit times, Discrete and Continuous Dynamical Systems B, 17 (2012), 849-869. doi: 10.3934/dcdsb.2012.17.849.

[17]

T. Hillen, Transport equations with resting phases, European J. Appl. Math., 14 (2003), 613-636. doi: 10.1017/S0956792503005291.

[18]

A. N. W. Hone, M. V. Irle and G. W. Thurura, On the Naimark-Sacker bifurcation in a discrete predator-prey system, J. Biological Dynamics, 4 (2010), 594-606. doi: 10.1080/17513750903528192.

[19]

W. Jäger, S. Krömker and B. Tang, Quiescence and transient growth dynamics in chemostat models, Mathematical Biosciences, 119 (1994), 225-239. doi: 10.1016/0025-5564(94)90077-9.

[20]

M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001 doi: 10.1017/CBO9780511608520.

[21]

M. A. Lewis and G. Schmitz, Biological invasion of an organism with separate mobile and stationary states: Modelling and analysis, Forma, 11 (1996), 1-25.

[22]

X. Liu and X. Dongmei, Complex dynamic behavior of a discrete-time predator-prey system, Chaos, Solitons & Fractals, 32 (2007), 80-94. doi: 10.1016/j.chaos.2005.10.081.

[23]

F. Lutscher and V. M. Nguyen, Traveling waves in discrete models of biological populations with sessile stages, Nonlinear Analysis: Real World Applications, 14 (2013), 495-506. doi: 10.1016/j.nonrwa.2012.07.011.

[24]

T. Malik and H. Smith, A resource-based model of microbial quiescence, J. of Mathematical Biology, 53 (2006), 231-252. doi: 10.1007/s00285-006-0003-4.

[25]

M. Marden, The Geometry of the Zeroes of a Polynomial in a Complex Variable, AMS, New York, 1949.

[26]

J. D. Murray, Mathematical Biology, Biomathematics, 19, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[27]

M. Neubert, P. Klepac and P. van den Driessche, Stabilizing dispersal delays in predator-prey metapopulation models, Theoretical Population Biology, 61 (2002), 339-347. doi: 10.1006/tpbi.2002.1578.

[28]

M. G. Neubert, M. Kot and M. A. Lewis, Dispersal and pattern formation in a discrete-time predator-prey model, Theoretical Population Biology, 48 (1995), 7-43. doi: 10.1006/tpbi.1995.1020.

[29]

T. J. Newman, J. Antonovics and H. M. Wilbur, Population dynamics with a refuge: Fractal basins and the suppression of chaos, Theoretical Population Biology, 62 (2002), 121-128. doi: 10.1006/tpbi.2002.1584.

[30]

P. Olofsson, A stochastic model of a cell population with quiescence, J. of Biological Dynamics, 2 (2008), 386-391. doi: 10.1080/17513750801956305.

show all references

References:
[1]

T. Alarcón and H. J. Jensen, Quiescence, a mechanism for escaping the effects of drug on cell populations, J. Roy. Soc. Interface, 8 (2011), 99-106. doi: 10.1098/rsif.2010.0130.

[2]

O. Arino, E. Sanchez and G. F. Webb, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215 (1997), 499-513. doi: 10.1006/jmaa.1997.5654.

[3]

J. R. Beddington, C. A. Free and J. H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, 255 (1975), 58-60. doi: 10.1038/255058a0.

[4]

L. Bilinsky and K. P. Hadeler, Quiescence stabilizes predator-prey relations, J. Biological Dynamics, 3 (2009), 196-208. doi: 10.1080/17513750802590707.

[5]

C. A. Cobbold, J. Roland and M. A. Lewis, The impact of parasitoid emergence time on host-parasitoid population dynamics, Theoretical Population Biology, 75 (2009), 201-215. doi: 10.1016/j.tpb.2009.02.004.

[6]

J. Dyson, R. Villela-Bressan and G. F. Webb, Asynchronous exponential growth in an age structured population of proliferating and quiescent cells, Mathematical Biosciences, 177-178 (2002), 73-83. doi: 10.1016/S0025-5564(01)00097-9.

[7]

I. Gerstmann and K. P. Hadeler, The discrete Rosenzweig model, Mathematical Biosciences, 98 (1990), 49-72. doi: 10.1016/0025-5564(90)90011-M.

[8]

M. Gyllenberg and G. F. Webb, Age-size structure in populations with quiescence, Mathematical Biosciences 86 (1987), 67-95. doi: 10.1016/0025-5564(87)90064-2.

[9]

M. Gyllenberg and G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, J. of Mathematical Biology, 28 (1990), 671-694. doi: 10.1007/BF00160231.

[10]

K. P. Hadeler, Homogeneous equations with a quiescent phase, Math. Models Natural Phenomena, 3 (2008), 115-125. doi: 10.1051/mmnp:2008044.

[11]

K. P. Hadeler, Quiescent phases and stability, Linear Algebra and its Applications, 428 (2008), 1620-1627. doi: 10.1016/j.laa.2007.10.008.

[12]

K. P. Hadeler, Quiescence, excitability, and heterogeneity in ecological models, J. of Mathematical Biology, 66 (2013), 649-684. doi: 10.1007/s00285-012-0590-1.

[13]

K. P. Hadeler and T. Hillen, Coupled dynamics and quiescent states, in Math Everywhere (eds. G. Aletti, M. Burger, A. Micheletti and D. Morale), Springer, Berlin, 2007, 7-23. doi: 10.1007/978-3-540-44446-6_2.

[14]

K. P. Hadeler, T. Hillen and M. Lewis, Biological modeling with quiescent phases, in Spatial Ecology, (eds. C. Cosner and S. Cantrell and S. Ruan), Taylor and Francis, 2009, chapter 5.

[15]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Canadian Applied Mathematics Quarterly, 10 (2002), 473-499.

[16]

K. P. Hadeler and F. Lutscher, Quiescent phases with distributed exit times, Discrete and Continuous Dynamical Systems B, 17 (2012), 849-869. doi: 10.3934/dcdsb.2012.17.849.

[17]

T. Hillen, Transport equations with resting phases, European J. Appl. Math., 14 (2003), 613-636. doi: 10.1017/S0956792503005291.

[18]

A. N. W. Hone, M. V. Irle and G. W. Thurura, On the Naimark-Sacker bifurcation in a discrete predator-prey system, J. Biological Dynamics, 4 (2010), 594-606. doi: 10.1080/17513750903528192.

[19]

W. Jäger, S. Krömker and B. Tang, Quiescence and transient growth dynamics in chemostat models, Mathematical Biosciences, 119 (1994), 225-239. doi: 10.1016/0025-5564(94)90077-9.

[20]

M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001 doi: 10.1017/CBO9780511608520.

[21]

M. A. Lewis and G. Schmitz, Biological invasion of an organism with separate mobile and stationary states: Modelling and analysis, Forma, 11 (1996), 1-25.

[22]

X. Liu and X. Dongmei, Complex dynamic behavior of a discrete-time predator-prey system, Chaos, Solitons & Fractals, 32 (2007), 80-94. doi: 10.1016/j.chaos.2005.10.081.

[23]

F. Lutscher and V. M. Nguyen, Traveling waves in discrete models of biological populations with sessile stages, Nonlinear Analysis: Real World Applications, 14 (2013), 495-506. doi: 10.1016/j.nonrwa.2012.07.011.

[24]

T. Malik and H. Smith, A resource-based model of microbial quiescence, J. of Mathematical Biology, 53 (2006), 231-252. doi: 10.1007/s00285-006-0003-4.

[25]

M. Marden, The Geometry of the Zeroes of a Polynomial in a Complex Variable, AMS, New York, 1949.

[26]

J. D. Murray, Mathematical Biology, Biomathematics, 19, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[27]

M. Neubert, P. Klepac and P. van den Driessche, Stabilizing dispersal delays in predator-prey metapopulation models, Theoretical Population Biology, 61 (2002), 339-347. doi: 10.1006/tpbi.2002.1578.

[28]

M. G. Neubert, M. Kot and M. A. Lewis, Dispersal and pattern formation in a discrete-time predator-prey model, Theoretical Population Biology, 48 (1995), 7-43. doi: 10.1006/tpbi.1995.1020.

[29]

T. J. Newman, J. Antonovics and H. M. Wilbur, Population dynamics with a refuge: Fractal basins and the suppression of chaos, Theoretical Population Biology, 62 (2002), 121-128. doi: 10.1006/tpbi.2002.1584.

[30]

P. Olofsson, A stochastic model of a cell population with quiescence, J. of Biological Dynamics, 2 (2008), 386-391. doi: 10.1080/17513750801956305.

[1]

Shu Li, Zhenzhen Li, Binxiang Dai. Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022025

[2]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[3]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[4]

Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019

[5]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[6]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[7]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[8]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[9]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259

[10]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[11]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 229-243. doi: 10.3934/dcdsb.2021038

[12]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[13]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[14]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[15]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[16]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[17]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[18]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[19]

Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

[20]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]