Citation: |
[1] |
I. V. Boykov, Numerical methods of computation of singular and hypersingular integrals, Internat. J. Math. Math. Sci., 28 (2001), 127-179.doi: 10.1155/S0161171201010924. |
[2] |
I. V. Boykov, E. S. Ventsel and A. I. Boykov, Accuracy optimal methods for evaluating hypersingular integrals, Appl. Numer. Math., 59 (2009), 1366-1385.doi: 10.1016/j.apnum.2008.08.004. |
[3] |
Y. S. Chan, A. C. Fannjiang and G. H. Paulino, Integral equations with hypersingular kernels-theory and applications to fracture mechanics, Int. J. Eng. Sci., 41 (2003), 683-720.doi: 10.1016/S0020-7225(02)00134-9. |
[4] |
Y. Z. Chen, A numerical solution technique of hypersingular integral equation for curved cracks, Comm. Numer. Methods Engrg., 19 (2003), 645-655.doi: 10.1002/cnm.623. |
[5] |
D. L. Clements, M. Lobo and N. Widana, A hypersingular boundary integral equation for a class of problems concerning infiltration from periodic channels, Electron. J. Bound. Elem., 5 (2007), 1-16. |
[6] |
A. G. Davydov, E. V. Zakharov and Y. V. Pimenov, Hypersingular integral equations in computational electrodynamics, Comput. Math. Model., 14 (2003), 1-15.doi: 10.1023/A:1022072215887. |
[7] |
A. G. Davydov and E. V. Zakharov and Y. V. Pimenov, Hypersingular integral equations for the diffraction of electromagnetic waves on homogeneous magneto-dielectric bodies, Comput. Math. Model., 17 (2006), 97-104.doi: 10.1007/s10598-006-0001-9. |
[8] |
Y. F. Dong and H. C. Gea, A non-hypersingular boundary integral formulation for displacement gradients in linear elasticity, Acta Mech., 129 (1998), 187-205.doi: 10.1007/BF01176745. |
[9] |
Q. K. Du, Evaluations of certain hypersingular integrals on interval, Internat. J. Numer. Methods Engrg., 51 (2001), 1195-1210.doi: 10.1002/nme.218. |
[10] |
M. Fogiel, Handbook of Mathematical, Scientific, and Engineering, Research and Education Association, New Jersey, 1994. |
[11] |
A. Frangi and M. Guiggiani, Boundary element analysis of kirchhoff plates with direct evaluation of hypersingular integrals, Int. J. Numer. Meth. Engng., 46 (1999), 1845-1863.doi: 10.1002/(SICI)1097-0207(19991220)46:11<1845::AID-NME747>3.0.CO;2-I. |
[12] |
L. Gori, E. Pellegrino and E. Santi, Numerical evaluation of certain hypersingular integrals using refinable operators, Math. Comput. Simulation, 82 (2011), 132-143.doi: 10.1016/j.matcom.2010.07.006. |
[13] |
L. S. Gradsbteyn and L. M. Ryzbik, Table of Integrals, Series and Produts, Elsevier Pte Ltd, Singapore, 2004. |
[14] |
L. J. Gray, J. M. Glaeser and T. Kapla, Direct evaluation of hypersingular Galerkin surface integrals, SIAM J. Sci. Comput., 25 (2004), 1534-1556.doi: 10.1137/S1064827502405999. |
[15] |
L. J. Gray, L. F. Martha and A. R. Ingraffea, Hypersingular integrals in boundary element fracture analysis, Internat. J. Numer. Methods Engrg., 29 (1990), 1135-1158.doi: 10.1002/nme.1620290603. |
[16] |
C. L. Hu, J. Lu and X. M. He, Productivity formulae of an infinite-conductivity hydraulically fractured well producing at constant wellbore pressure based on numerical solutions of a weakly singular integral equation of the first kind, Math. Probl. Eng., (2012), Article ID 428596, 18 pages. |
[17] |
C. L. Hu, J. Lu and X. M. He, Numerical solutions of hypersingular integral equation with application to productivity formulae of horizontal wells producing at constant wellbore pressure, Int. J. Numer. Anal. Mod., Series B, 5 (2014), 269-288. |
[18] |
J. Huang, Z. Wang and R. Zhu, Asymptotic error expansion for hypersingular integrals, Adv. Comput. Math., 38 (2013), 257-279.doi: 10.1007/s10444-011-9236-x. |
[19] |
O. Huber, R. Dallner, P. Partheymüller and G. Kuhn, Evaluation of the stress tensor in 3-D elastoplasticity by direct solving of hypersingular integrals, Internat. J. Numer. Methods Engrg., 39 (1996), 2555-2573.doi: 10.1002/(SICI)1097-0207(19960815)39:15<2555::AID-NME966>3.0.CO;2-6. |
[20] |
O. Huber, A. Lang and G. Kuhn, Evaluation of the stress tensor in 3D elastostatics by direct solving of hypersingular integrals, Comput. Mech., 12 (1993), 39-50.doi: 10.1007/BF00370484. |
[21] |
N. I. Ioakimidis, Two-dimensional principal value hypersingular integrals for crack problems in three-dimensional elasticity, Acta Mech., 82 (1990), 129-134.doi: 10.1007/BF01173742. |
[22] |
N. I. Ioakimidis, The Gauss-Laguerre quadrature rule for finite-part integrals, Comm. Numer. Methods Engrg., 9 (1993), 439-450.doi: 10.1002/cnm.1640090509. |
[23] |
M. A. Kelmanson, Hypersingular boundary integrals in cusped two-dimensional free-surface Stokes flow, J. Fluid Mech., 514 (2004), 313-325.doi: 10.1017/S0022112004000515. |
[24] |
P. Kolm and V. Rokhlin, Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl., 41 (2001), 327-352.doi: 10.1016/S0898-1221(00)00277-7. |
[25] |
A. M. Korsunsky, On the use of interpolative quadratures for hypersingular integrals in fracture mechanics, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), 2721-2733.doi: 10.1098/rspa.2002.1001. |
[26] |
A. M. Korsunsky, Gauss-Chebyshev quadrature formulae for strongly singular integrals, Quart. Appl. Math., 56 (1998), 461-472. |
[27] |
L. A. de Lacerda and L. C. Wrobel, Hypersingular boundary integral equation for axisymmetric elasticity, Internat. J. Numer. Methods Engrg., 52 (2001), 1337-1354.doi: 10.1002/nme.259. |
[28] |
S. Li and Q. Huang, An improved form of the hypersingular boundary integral equation for exterior acoustic problems, Eng. Anal. Bound. Elem., 34 (2010), 189-195.doi: 10.1016/j.enganabound.2009.10.005. |
[29] |
I. K. Lifanov, L. N. Poltavskii and G. M. Vainikko, Hypersingular Integral Equations and Their Applications, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[30] |
A. M. Lin'kov and S. G. Mogilevskaya, Complex hypersingular integrals and integral equations in plane elasticity, Acta Mech., 105 (1994), 189-205.doi: 10.1007/BF01183951. |
[31] |
Y. Liu and S. Chen, A new form of the hypersingular boundary integral equation for 3-D acoustics and its implementation with C0 boundary elements, Comput. Methods Appl. Mech. Engrg., 173 (1999), 375-386.doi: 10.1016/S0045-7825(98)00292-8. |
[32] |
Y. Liu and F. J. Rizzo, A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems, Comput. Methods Appl. Mech. Engrg., 96 (1992), 271-287.doi: 10.1016/0045-7825(92)90136-8. |
[33] |
G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math., 50 (1994), 9-31.doi: 10.1016/0377-0427(94)90287-9. |
[34] |
G. Monegato and J. N. Lyness, The Euler-Maclaurin expansion and finite-part integrals, Numer. Math., 81 (1998), 273-291.doi: 10.1007/s002110050392. |
[35] |
G. Monegato, R. Orta and R. Tascone, A fast method for the solution of a hypersingular integral equation arising in a waveguide scattering problem, Internat. J. Numer. Methods Engrg., 67 (2006), 272-297.doi: 10.1002/nme.1633. |
[36] |
L. M. Romero and F. G. Benitez, Traffic flow continuum modeling by hypersingular boundary integral equations, Internat. J. Numer. Methods Engrg., 82 (2010), 47-63.doi: 10.1002/nme.2754. |
[37] |
G. Rus and R. Gallego, Hypersingular shape sensitivity boundary integral equation for crack identification under harmonic elastodynamic excitation, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2596-2618.doi: 10.1016/j.cma.2006.12.004. |
[38] |
A. Salvadori, Hypersingular boundary integral equations and the approximation of the stress tensor, Internat. J. Numer. Methods Engrg., 72 (2007), 722-743.doi: 10.1002/nme.2041. |
[39] |
S. G. Samko, Hypersingular Integrals and Their Applications, Analytical Methods and Special Functions, 5. Taylor & Francis, Ltd., London, 2002. |
[40] |
A. Sidi, Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities, Math. Comp., 81 (2012), 2159-2173.doi: 10.1090/S0025-5718-2012-02597-X. |
[41] |
V. Sládek, J. Sládek and M. Tanaka, Regularization of hypersingular and nearly singular integrals in the potential theory and elasticity, Internat. J. Numer. Methods Engrg., 36 (1993), 1609-1628.doi: 10.1002/nme.1620361002. |
[42] |
W. W. Sun and J. M. Wu, Newton-Cotes formulae for the numerical evaluation of certain hypersingular integrals, Computing, 75 (2005), 297-309.doi: 10.1007/s00607-005-0131-5. |
[43] |
A. Sutradhar, G. H. Paulino and L. J. Gray, On hypersingular surface integrals in the symmetric Galerkin boundary element method: Application to heat conduction in exponentially graded materials, Internat. J. Numer. Methods Engrg., 62 (2005), 122-157.doi: 10.1002/nme.1195. |
[44] |
M. S. Tong and W. C. Chew, A Novel Approach for evaluating hypersingular and strongly singular surface integrals in electromagnetics, IEEE Trans. Antennas and Propagation, 58 (2010), 3593-3601.doi: 10.1109/TAP.2010.2071370. |
[45] |
J. M. Wu and W. W. Sun, The superconvergence of the comosite trapezoidal rule for Hadamard finite-part integrals, Numer. Math., 102 (2005), 343-363.doi: 10.1007/s00211-005-0647-9. |
[46] |
J. M. Wu and W. W. Sun, The superconvergence of Newton-Cotes rules for the Hadamard finite-part integrals on an interval, Numer. Math., 109 (2008), 143-165.doi: 10.1007/s00211-007-0125-7. |
[47] |
E. V. Zakharov and I. V. Khaleeva, Hypersingular integral operators in diffraction problems of electromagnetic waves on open surfaces, Comput. Math. Model., 5 (1994), 208-213.doi: 10.1007/BF01130295. |
[48] |
P. Zhang and T. W. Wu, A hypersingular integral formulation for acoustic radiation in moving flows, J. Sound Vibration, 206 (1997), 309-326.doi: 10.1006/jsvi.1997.1039. |
[49] |
X. Zhang, J. Wu and D. H. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application, Int. J. Comput. Math., 87 (2010), 855-876.doi: 10.1080/00207160802226517. |
[50] |
C. Zheng, T. Matsumoto, T. Matsumoto and H. Chen, Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differentiation method, Eng. Anal. Bound. Elem., 35 (2011), 1225-1235.doi: 10.1016/j.enganabound.2011.05.004. |
[51] |
V. V. Zozulya, Regularization of the hypersingular integrals in 3-D problems of fracture mechanics, Boundary elements and other mesh reduction methods XXX, WIT Trans. Model. Simul., WIT Press, Southampton, 47 (2008), 219-228.doi: 10.2495/BEO80221. |
[52] |
V. V. Zozulya and P. I. Gonzalez-Chi, Weakly singular, singular and hypersingular integrals in 3-D elasticity and fracture mechanics, J. Chinese Inst. Engrs., 22 (1999), 763-775.doi: 10.1080/02533839.1999.9670512. |