• Previous Article
    Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems
  • DCDS-B Home
  • This Issue
  • Next Article
    A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential
July  2015, 20(5): 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

The dynamics of an HBV epidemic model on complex heterogeneous networks

1. 

School of Mathematics & Physics, China University of Geoscience, Wuhan 430074, Hubei Province, China, China, China

Received  April 2014 Revised  January 2015 Published  May 2015

In this paper, an HBV epidemic model on complex heterogeneous networks is proposed. Theoretical analysis of the HBV spreading dynamics is presented via mean-field approximation. Stabilities of the disease-free equilibrium and the endemic equilibrium are studied. The theoretical results reveal that disease propagation is impacted by the heterogeneous connectivity patterns and the underlying network structures.
Citation: Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393
References:
[1]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev, 42 (2000), 599-653. doi: 10.1137/S0036144500371907.

[2]

M. H. Qiao, H. Qi and Y. C. Chen, Qualitative analysis of hepatitis B virus infection model with impulsive vaccination and time delay, Acta Mathematica Scientia, 31 (2011), 1020-1034. doi: 10.1016/S0252-9602(11)60294-4.

[3]

M. H. Qiao, A. P. Liu and U. Fory's, Qualitative analysis of the SICR epidemic model with impulsive vaccinations, Math. Meth. Appl. Sci., 36 (2013), 695-706. doi: 10.1002/mma.2620.

[4]

M. H. Qiao, A. P. Liu and U. Fory's, The dynamics of a time delayed epidemic model on a population with birth pulse, Applied Mathematics and Computation, 252 (2015), 166-174. doi: 10.1016/j.amc.2014.12.022.

[5]

S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology, J R Soc Interface, 4 (2007), 879-891. doi: 10.1098/rsif.2007.1100.

[6]

X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys Rev E, 77 (2008), 036113, 8pp. doi: 10.1103/PhysRevE.77.036113.

[7]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys Rev E, 69 (2004), 066105. doi: 10.1103/PhysRevE.69.066105.

[8]

Z. Liu and B. Hu, Epidemic spreading in community networks, Europhys Lett, 72 (2005), 315-321. doi: 10.1209/epl/i2004-10550-5.

[9]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys Rev E, 70 (2004), 030902(R). doi: 10.1103/PhysRevE.70.030902.

[10]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in scale-free networks, Phys Rev Lett, 86 (2001), p3200.

[11]

A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. doi: 10.1126/science.286.5439.509.

[12]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur Phys J. B., 26 (2002), 521-529. doi: 10.1140/epjb/e20020122.

[13]

L. Wang and G. Z. Dai. Global, stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 1495-1502. doi: 10.1137/070694582.

[14]

J. Liu and T. Zhang, Epidemic spreading of an SEIRS model in scale-free networks, Commun Nonlinear Sci Numer Simul, 16 (2011), 3375-3384. doi: 10.1016/j.cnsns.2010.11.019.

show all references

References:
[1]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev, 42 (2000), 599-653. doi: 10.1137/S0036144500371907.

[2]

M. H. Qiao, H. Qi and Y. C. Chen, Qualitative analysis of hepatitis B virus infection model with impulsive vaccination and time delay, Acta Mathematica Scientia, 31 (2011), 1020-1034. doi: 10.1016/S0252-9602(11)60294-4.

[3]

M. H. Qiao, A. P. Liu and U. Fory's, Qualitative analysis of the SICR epidemic model with impulsive vaccinations, Math. Meth. Appl. Sci., 36 (2013), 695-706. doi: 10.1002/mma.2620.

[4]

M. H. Qiao, A. P. Liu and U. Fory's, The dynamics of a time delayed epidemic model on a population with birth pulse, Applied Mathematics and Computation, 252 (2015), 166-174. doi: 10.1016/j.amc.2014.12.022.

[5]

S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology, J R Soc Interface, 4 (2007), 879-891. doi: 10.1098/rsif.2007.1100.

[6]

X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys Rev E, 77 (2008), 036113, 8pp. doi: 10.1103/PhysRevE.77.036113.

[7]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys Rev E, 69 (2004), 066105. doi: 10.1103/PhysRevE.69.066105.

[8]

Z. Liu and B. Hu, Epidemic spreading in community networks, Europhys Lett, 72 (2005), 315-321. doi: 10.1209/epl/i2004-10550-5.

[9]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys Rev E, 70 (2004), 030902(R). doi: 10.1103/PhysRevE.70.030902.

[10]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in scale-free networks, Phys Rev Lett, 86 (2001), p3200.

[11]

A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. doi: 10.1126/science.286.5439.509.

[12]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur Phys J. B., 26 (2002), 521-529. doi: 10.1140/epjb/e20020122.

[13]

L. Wang and G. Z. Dai. Global, stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 1495-1502. doi: 10.1137/070694582.

[14]

J. Liu and T. Zhang, Epidemic spreading of an SEIRS model in scale-free networks, Commun Nonlinear Sci Numer Simul, 16 (2011), 3375-3384. doi: 10.1016/j.cnsns.2010.11.019.

[1]

Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134

[2]

Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167

[3]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[4]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056

[5]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[6]

Weiyi Zhang, Ling Zhou. Global asymptotic stability of constant equilibrium in a nonlocal diffusion competition model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022062

[7]

Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016

[8]

V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks and Heterogeneous Media, 2006, 1 (4) : 621-637. doi: 10.3934/nhm.2006.1.621

[9]

Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055

[10]

Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733

[11]

Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465

[12]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[13]

Xichao Duan, Sanling Yuan, Kaifa Wang. Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences & Engineering, 2016, 13 (5) : 935-968. doi: 10.3934/mbe.2016024

[14]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[15]

Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615

[16]

Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial and Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039

[17]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

[18]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[19]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[20]

A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]