-
Previous Article
Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems
- DCDS-B Home
- This Issue
-
Next Article
A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential
The dynamics of an HBV epidemic model on complex heterogeneous networks
1. | School of Mathematics & Physics, China University of Geoscience, Wuhan 430074, Hubei Province, China, China, China |
References:
[1] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[2] |
M. H. Qiao, H. Qi and Y. C. Chen, Qualitative analysis of hepatitis B virus infection model with impulsive vaccination and time delay, Acta Mathematica Scientia, 31 (2011), 1020-1034.
doi: 10.1016/S0252-9602(11)60294-4. |
[3] |
M. H. Qiao, A. P. Liu and U. Fory's, Qualitative analysis of the SICR epidemic model with impulsive vaccinations, Math. Meth. Appl. Sci., 36 (2013), 695-706.
doi: 10.1002/mma.2620. |
[4] |
M. H. Qiao, A. P. Liu and U. Fory's, The dynamics of a time delayed epidemic model on a population with birth pulse, Applied Mathematics and Computation, 252 (2015), 166-174.
doi: 10.1016/j.amc.2014.12.022. |
[5] |
S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology, J R Soc Interface, 4 (2007), 879-891.
doi: 10.1098/rsif.2007.1100. |
[6] |
X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys Rev E, 77 (2008), 036113, 8pp.
doi: 10.1103/PhysRevE.77.036113. |
[7] |
J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys Rev E, 69 (2004), 066105.
doi: 10.1103/PhysRevE.69.066105. |
[8] |
Z. Liu and B. Hu, Epidemic spreading in community networks, Europhys Lett, 72 (2005), 315-321.
doi: 10.1209/epl/i2004-10550-5. |
[9] |
R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys Rev E, 70 (2004), 030902(R).
doi: 10.1103/PhysRevE.70.030902. |
[10] |
R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in scale-free networks, Phys Rev Lett, 86 (2001), p3200. |
[11] |
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[12] |
Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur Phys J. B., 26 (2002), 521-529.
doi: 10.1140/epjb/e20020122. |
[13] |
L. Wang and G. Z. Dai. Global, stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 1495-1502.
doi: 10.1137/070694582. |
[14] |
J. Liu and T. Zhang, Epidemic spreading of an SEIRS model in scale-free networks, Commun Nonlinear Sci Numer Simul, 16 (2011), 3375-3384.
doi: 10.1016/j.cnsns.2010.11.019. |
show all references
References:
[1] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[2] |
M. H. Qiao, H. Qi and Y. C. Chen, Qualitative analysis of hepatitis B virus infection model with impulsive vaccination and time delay, Acta Mathematica Scientia, 31 (2011), 1020-1034.
doi: 10.1016/S0252-9602(11)60294-4. |
[3] |
M. H. Qiao, A. P. Liu and U. Fory's, Qualitative analysis of the SICR epidemic model with impulsive vaccinations, Math. Meth. Appl. Sci., 36 (2013), 695-706.
doi: 10.1002/mma.2620. |
[4] |
M. H. Qiao, A. P. Liu and U. Fory's, The dynamics of a time delayed epidemic model on a population with birth pulse, Applied Mathematics and Computation, 252 (2015), 166-174.
doi: 10.1016/j.amc.2014.12.022. |
[5] |
S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology, J R Soc Interface, 4 (2007), 879-891.
doi: 10.1098/rsif.2007.1100. |
[6] |
X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys Rev E, 77 (2008), 036113, 8pp.
doi: 10.1103/PhysRevE.77.036113. |
[7] |
J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys Rev E, 69 (2004), 066105.
doi: 10.1103/PhysRevE.69.066105. |
[8] |
Z. Liu and B. Hu, Epidemic spreading in community networks, Europhys Lett, 72 (2005), 315-321.
doi: 10.1209/epl/i2004-10550-5. |
[9] |
R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys Rev E, 70 (2004), 030902(R).
doi: 10.1103/PhysRevE.70.030902. |
[10] |
R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in scale-free networks, Phys Rev Lett, 86 (2001), p3200. |
[11] |
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[12] |
Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur Phys J. B., 26 (2002), 521-529.
doi: 10.1140/epjb/e20020122. |
[13] |
L. Wang and G. Z. Dai. Global, stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 1495-1502.
doi: 10.1137/070694582. |
[14] |
J. Liu and T. Zhang, Epidemic spreading of an SEIRS model in scale-free networks, Commun Nonlinear Sci Numer Simul, 16 (2011), 3375-3384.
doi: 10.1016/j.cnsns.2010.11.019. |
[1] |
Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134 |
[2] |
Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167 |
[3] |
Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727 |
[4] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056 |
[5] |
Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529 |
[6] |
Weiyi Zhang, Ling Zhou. Global asymptotic stability of constant equilibrium in a nonlocal diffusion competition model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022062 |
[7] |
Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016 |
[8] |
V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks and Heterogeneous Media, 2006, 1 (4) : 621-637. doi: 10.3934/nhm.2006.1.621 |
[9] |
Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055 |
[10] |
Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733 |
[11] |
Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465 |
[12] |
Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030 |
[13] |
Xichao Duan, Sanling Yuan, Kaifa Wang. Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences & Engineering, 2016, 13 (5) : 935-968. doi: 10.3934/mbe.2016024 |
[14] |
Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065 |
[15] |
Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615 |
[16] |
Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial and Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039 |
[17] |
T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269 |
[18] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[19] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[20] |
A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]