• Previous Article
    Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems
  • DCDS-B Home
  • This Issue
  • Next Article
    A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential
July  2015, 20(5): 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

The dynamics of an HBV epidemic model on complex heterogeneous networks

1. 

School of Mathematics & Physics, China University of Geoscience, Wuhan 430074, Hubei Province, China, China, China

Received  April 2014 Revised  January 2015 Published  May 2015

In this paper, an HBV epidemic model on complex heterogeneous networks is proposed. Theoretical analysis of the HBV spreading dynamics is presented via mean-field approximation. Stabilities of the disease-free equilibrium and the endemic equilibrium are studied. The theoretical results reveal that disease propagation is impacted by the heterogeneous connectivity patterns and the underlying network structures.
Citation: Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393
References:
[1]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[2]

M. H. Qiao, H. Qi and Y. C. Chen, Qualitative analysis of hepatitis B virus infection model with impulsive vaccination and time delay,, Acta Mathematica Scientia, 31 (2011), 1020.  doi: 10.1016/S0252-9602(11)60294-4.  Google Scholar

[3]

M. H. Qiao, A. P. Liu and U. Fory's, Qualitative analysis of the SICR epidemic model with impulsive vaccinations,, Math. Meth. Appl. Sci., 36 (2013), 695.  doi: 10.1002/mma.2620.  Google Scholar

[4]

M. H. Qiao, A. P. Liu and U. Fory's, The dynamics of a time delayed epidemic model on a population with birth pulse,, Applied Mathematics and Computation, 252 (2015), 166.  doi: 10.1016/j.amc.2014.12.022.  Google Scholar

[5]

S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology,, J R Soc Interface, 4 (2007), 879.  doi: 10.1098/rsif.2007.1100.  Google Scholar

[6]

X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,, Phys Rev E, 77 (2008).  doi: 10.1103/PhysRevE.77.036113.  Google Scholar

[7]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation,, Phys Rev E, 69 (2004).  doi: 10.1103/PhysRevE.69.066105.  Google Scholar

[8]

Z. Liu and B. Hu, Epidemic spreading in community networks,, Europhys Lett, 72 (2005), 315.  doi: 10.1209/epl/i2004-10550-5.  Google Scholar

[9]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys Rev E, 70 (2004).  doi: 10.1103/PhysRevE.70.030902.  Google Scholar

[10]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in scale-free networks,, Phys Rev Lett, 86 (2001).   Google Scholar

[11]

A. L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[12]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks,, Eur Phys J. B., 26 (2002), 521.  doi: 10.1140/epjb/e20020122.  Google Scholar

[13]

L. Wang and G. Z. Dai. Global, stability of virus spreading in complex heterogeneous networks,, SIAM J. Appl. Math., 68 (2008), 1495.  doi: 10.1137/070694582.  Google Scholar

[14]

J. Liu and T. Zhang, Epidemic spreading of an SEIRS model in scale-free networks,, Commun Nonlinear Sci Numer Simul, 16 (2011), 3375.  doi: 10.1016/j.cnsns.2010.11.019.  Google Scholar

show all references

References:
[1]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[2]

M. H. Qiao, H. Qi and Y. C. Chen, Qualitative analysis of hepatitis B virus infection model with impulsive vaccination and time delay,, Acta Mathematica Scientia, 31 (2011), 1020.  doi: 10.1016/S0252-9602(11)60294-4.  Google Scholar

[3]

M. H. Qiao, A. P. Liu and U. Fory's, Qualitative analysis of the SICR epidemic model with impulsive vaccinations,, Math. Meth. Appl. Sci., 36 (2013), 695.  doi: 10.1002/mma.2620.  Google Scholar

[4]

M. H. Qiao, A. P. Liu and U. Fory's, The dynamics of a time delayed epidemic model on a population with birth pulse,, Applied Mathematics and Computation, 252 (2015), 166.  doi: 10.1016/j.amc.2014.12.022.  Google Scholar

[5]

S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology,, J R Soc Interface, 4 (2007), 879.  doi: 10.1098/rsif.2007.1100.  Google Scholar

[6]

X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,, Phys Rev E, 77 (2008).  doi: 10.1103/PhysRevE.77.036113.  Google Scholar

[7]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation,, Phys Rev E, 69 (2004).  doi: 10.1103/PhysRevE.69.066105.  Google Scholar

[8]

Z. Liu and B. Hu, Epidemic spreading in community networks,, Europhys Lett, 72 (2005), 315.  doi: 10.1209/epl/i2004-10550-5.  Google Scholar

[9]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys Rev E, 70 (2004).  doi: 10.1103/PhysRevE.70.030902.  Google Scholar

[10]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in scale-free networks,, Phys Rev Lett, 86 (2001).   Google Scholar

[11]

A. L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[12]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks,, Eur Phys J. B., 26 (2002), 521.  doi: 10.1140/epjb/e20020122.  Google Scholar

[13]

L. Wang and G. Z. Dai. Global, stability of virus spreading in complex heterogeneous networks,, SIAM J. Appl. Math., 68 (2008), 1495.  doi: 10.1137/070694582.  Google Scholar

[14]

J. Liu and T. Zhang, Epidemic spreading of an SEIRS model in scale-free networks,, Commun Nonlinear Sci Numer Simul, 16 (2011), 3375.  doi: 10.1016/j.cnsns.2010.11.019.  Google Scholar

[1]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[2]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[3]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[6]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[9]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]