July  2015, 20(5): 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems

1. 

School of Mathematics and Statistics, and Key Laboratory of Applied Mathematics and Complex Systems in Gansu Province, Lanzhou University, Lanzhou 730000, China

2. 

Beijing Computational Science Research Center, Beijing 100094, China

Received  February 2014 Revised  January 2015 Published  May 2015

A polynomial preserving recovery technique is applied to an over-penalized symmetric interior penalty method. The discontinuous Galerkin solution values are used to recover the gradient and to further construct an a posteriori error estimator in the energy norm. In addition, for uniform triangular meshes and mildly structured meshes satisfying the $\epsilon$-$\sigma$ condition, the method for the linear element is superconvergent under the regular pattern and under the chevron pattern, while it is superconvergent for the quadratic element under the regular pattern.
Citation: Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405
References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley Interscience, New York, 2000. doi: 10.1002/9781118032824.  Google Scholar

[2]

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760. doi: 10.1137/0719052.  Google Scholar

[3]

I. Babuška and W. C. Rheinboldt, A-Posteriori Error Estimates for the Finite Element Method, Internat. J. Numer. Methods Engrg., 12 (1978), 1597-1615. doi: 10.1002/nme.1620121010.  Google Scholar

[4]

I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, London, 2001.  Google Scholar

[5]

R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44 (1985), 283-301. doi: 10.1090/S0025-5718-1985-0777265-X.  Google Scholar

[6]

C. Brenner, L. Owens and L.-Y. Sung, A weakly over-penalized symmetric interior penalty method, Electron. Trans. Numer. Anal., 30 (2008), 107-127.  Google Scholar

[7]

S. C. Brenner, T. Gudi and L.-Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput., 40 (2009), 37-50. doi: 10.1007/s10915-009-9278-0.  Google Scholar

[8]

E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations, Math. Comp., 76 (2007), 1119-1140. doi: 10.1090/S0025-5718-07-01951-5.  Google Scholar

[9]

P. G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II (eds. P.G. Ciarlet and J.L. Lions), North-Holland, Amsterdam, (1991), 17-351.  Google Scholar

[10]

Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math., 206 (2007), 843-872. doi: 10.1016/j.cam.2006.08.029.  Google Scholar

[11]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[12]

Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp., 77 (2008), 1253-1268. doi: 10.1090/S0025-5718-08-02051-6.  Google Scholar

[13]

A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Continuous Dynam. Systems - B, 5 (2005), 769-798. doi: 10.3934/dcdsb.2005.5.769.  Google Scholar

[14]

P. Oswald, On a BPX-preconditioner for $P1$ elements, Computing, 51 (1993), 125-133. doi: 10.1007/BF02243847.  Google Scholar

[15]

P. O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Rev., 46 (2004), 329-345. doi: 10.1137/S0036144503429121.  Google Scholar

[16]

B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, Philadelphia, PA, 2008. doi: 10.1137/1.9780898717440.  Google Scholar

[17]

M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152-161. doi: 10.1137/0715010.  Google Scholar

[18]

Z. Zhang, Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals, Int. J. Num. Anal. Model., 1 (2004), 1-24.  Google Scholar

[19]

Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput., 26 (2005), 1192-1213. doi: 10.1137/S1064827503402837.  Google Scholar

[20]

Z. Zhang and A. Naga, A posteriori error estimates based on polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800. doi: 10.1137/S0036142903413002.  Google Scholar

[21]

Z. Zhang, Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio, Numer. Methods Partial Differential Equations, 24 (2008), 960-971. doi: 10.1002/num.20300.  Google Scholar

[22]

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357. doi: 10.1002/nme.1620240206.  Google Scholar

[23]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364. doi: 10.1002/nme.1620330702.  Google Scholar

[24]

J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), 1139-1152. doi: 10.1090/S0025-5718-03-01600-4.  Google Scholar

show all references

References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley Interscience, New York, 2000. doi: 10.1002/9781118032824.  Google Scholar

[2]

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760. doi: 10.1137/0719052.  Google Scholar

[3]

I. Babuška and W. C. Rheinboldt, A-Posteriori Error Estimates for the Finite Element Method, Internat. J. Numer. Methods Engrg., 12 (1978), 1597-1615. doi: 10.1002/nme.1620121010.  Google Scholar

[4]

I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, London, 2001.  Google Scholar

[5]

R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44 (1985), 283-301. doi: 10.1090/S0025-5718-1985-0777265-X.  Google Scholar

[6]

C. Brenner, L. Owens and L.-Y. Sung, A weakly over-penalized symmetric interior penalty method, Electron. Trans. Numer. Anal., 30 (2008), 107-127.  Google Scholar

[7]

S. C. Brenner, T. Gudi and L.-Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput., 40 (2009), 37-50. doi: 10.1007/s10915-009-9278-0.  Google Scholar

[8]

E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations, Math. Comp., 76 (2007), 1119-1140. doi: 10.1090/S0025-5718-07-01951-5.  Google Scholar

[9]

P. G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II (eds. P.G. Ciarlet and J.L. Lions), North-Holland, Amsterdam, (1991), 17-351.  Google Scholar

[10]

Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math., 206 (2007), 843-872. doi: 10.1016/j.cam.2006.08.029.  Google Scholar

[11]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[12]

Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp., 77 (2008), 1253-1268. doi: 10.1090/S0025-5718-08-02051-6.  Google Scholar

[13]

A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Continuous Dynam. Systems - B, 5 (2005), 769-798. doi: 10.3934/dcdsb.2005.5.769.  Google Scholar

[14]

P. Oswald, On a BPX-preconditioner for $P1$ elements, Computing, 51 (1993), 125-133. doi: 10.1007/BF02243847.  Google Scholar

[15]

P. O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Rev., 46 (2004), 329-345. doi: 10.1137/S0036144503429121.  Google Scholar

[16]

B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, Philadelphia, PA, 2008. doi: 10.1137/1.9780898717440.  Google Scholar

[17]

M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152-161. doi: 10.1137/0715010.  Google Scholar

[18]

Z. Zhang, Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals, Int. J. Num. Anal. Model., 1 (2004), 1-24.  Google Scholar

[19]

Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property, SIAM J. Sci. Comput., 26 (2005), 1192-1213. doi: 10.1137/S1064827503402837.  Google Scholar

[20]

Z. Zhang and A. Naga, A posteriori error estimates based on polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800. doi: 10.1137/S0036142903413002.  Google Scholar

[21]

Z. Zhang, Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio, Numer. Methods Partial Differential Equations, 24 (2008), 960-971. doi: 10.1002/num.20300.  Google Scholar

[22]

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357. doi: 10.1002/nme.1620240206.  Google Scholar

[23]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364. doi: 10.1002/nme.1620330702.  Google Scholar

[24]

J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), 1139-1152. doi: 10.1090/S0025-5718-03-01600-4.  Google Scholar

[1]

Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012

[2]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[3]

JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305

[4]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[5]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

[6]

Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133

[7]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[8]

Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189

[9]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[10]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[12]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[13]

Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2557-2570. doi: 10.3934/dcdss.2020400

[14]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[15]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[16]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006

[17]

Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949

[18]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[19]

Zhuoyi Xu, Yong Xia, Deren Han. On box-constrained total least squares problem. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 439-449. doi: 10.3934/naco.2020043

[20]

Xiao-Wen Chang, David Titley-Peloquin. An improved algorithm for generalized least squares estimation. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 451-461. doi: 10.3934/naco.2020044

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]