July  2015, 20(5): 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems

1. 

School of Mathematics and Statistics, and Key Laboratory of Applied Mathematics and Complex Systems in Gansu Province, Lanzhou University, Lanzhou 730000, China

2. 

Beijing Computational Science Research Center, Beijing 100094, China

Received  February 2014 Revised  January 2015 Published  May 2015

A polynomial preserving recovery technique is applied to an over-penalized symmetric interior penalty method. The discontinuous Galerkin solution values are used to recover the gradient and to further construct an a posteriori error estimator in the energy norm. In addition, for uniform triangular meshes and mildly structured meshes satisfying the $\epsilon$-$\sigma$ condition, the method for the linear element is superconvergent under the regular pattern and under the chevron pattern, while it is superconvergent for the quadratic element under the regular pattern.
Citation: Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405
References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis,, Wiley Interscience, (2000).  doi: 10.1002/9781118032824.  Google Scholar

[2]

D. N. Arnold, An interior penalty finite element method with discontinuous elements,, SIAM J. Numer. Anal., 19 (1982), 742.  doi: 10.1137/0719052.  Google Scholar

[3]

I. Babuška and W. C. Rheinboldt, A-Posteriori Error Estimates for the Finite Element Method,, Internat. J. Numer. Methods Engrg., 12 (1978), 1597.  doi: 10.1002/nme.1620121010.  Google Scholar

[4]

I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability,, Oxford University Press, (2001).   Google Scholar

[5]

R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations,, Math. Comp., 44 (1985), 283.  doi: 10.1090/S0025-5718-1985-0777265-X.  Google Scholar

[6]

C. Brenner, L. Owens and L.-Y. Sung, A weakly over-penalized symmetric interior penalty method,, Electron. Trans. Numer. Anal., 30 (2008), 107.   Google Scholar

[7]

S. C. Brenner, T. Gudi and L.-Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method,, J. Sci. Comput., 40 (2009), 37.  doi: 10.1007/s10915-009-9278-0.  Google Scholar

[8]

E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations,, Math. Comp., 76 (2007), 1119.  doi: 10.1090/S0025-5718-07-01951-5.  Google Scholar

[9]

P. G. Ciarlet, Basic error estimates for elliptic problems,, in Handbook of Numerical Analysis, (1991), 17.   Google Scholar

[10]

Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods,, J. Comput. Appl. Math., 206 (2007), 843.  doi: 10.1016/j.cam.2006.08.029.  Google Scholar

[11]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monogr. Stud. Math. 24, (1985).   Google Scholar

[12]

Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids,, Math. Comp., 77 (2008), 1253.  doi: 10.1090/S0025-5718-08-02051-6.  Google Scholar

[13]

A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D,, Discrete Continuous Dynam. Systems - B, 5 (2005), 769.  doi: 10.3934/dcdsb.2005.5.769.  Google Scholar

[14]

P. Oswald, On a BPX-preconditioner for $P1$ elements,, Computing, 51 (1993), 125.  doi: 10.1007/BF02243847.  Google Scholar

[15]

P. O. Persson and G. Strang, A simple mesh generator in Matlab,, SIAM Rev., 46 (2004), 329.  doi: 10.1137/S0036144503429121.  Google Scholar

[16]

B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation,, SIAM, (2008).  doi: 10.1137/1.9780898717440.  Google Scholar

[17]

M. F. Wheeler, An elliptic collocation-finite element method with interior penalties,, SIAM J. Numer. Anal., 15 (1978), 152.  doi: 10.1137/0715010.  Google Scholar

[18]

Z. Zhang, Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals,, Int. J. Num. Anal. Model., 1 (2004), 1.   Google Scholar

[19]

Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property,, SIAM J. Sci. Comput., 26 (2005), 1192.  doi: 10.1137/S1064827503402837.  Google Scholar

[20]

Z. Zhang and A. Naga, A posteriori error estimates based on polynomial preserving recovery,, SIAM J. Numer. Anal., 42 (2004), 1780.  doi: 10.1137/S0036142903413002.  Google Scholar

[21]

Z. Zhang, Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio,, Numer. Methods Partial Differential Equations, 24 (2008), 960.  doi: 10.1002/num.20300.  Google Scholar

[22]

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis,, Internat. J. Numer. Methods Engrg., 24 (1987), 337.  doi: 10.1002/nme.1620240206.  Google Scholar

[23]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique,, Internat. J. Numer. Methods Engrg., 33 (1992), 1331.  doi: 10.1002/nme.1620330702.  Google Scholar

[24]

J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids,, Math. Comp., 73 (2004), 1139.  doi: 10.1090/S0025-5718-03-01600-4.  Google Scholar

show all references

References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis,, Wiley Interscience, (2000).  doi: 10.1002/9781118032824.  Google Scholar

[2]

D. N. Arnold, An interior penalty finite element method with discontinuous elements,, SIAM J. Numer. Anal., 19 (1982), 742.  doi: 10.1137/0719052.  Google Scholar

[3]

I. Babuška and W. C. Rheinboldt, A-Posteriori Error Estimates for the Finite Element Method,, Internat. J. Numer. Methods Engrg., 12 (1978), 1597.  doi: 10.1002/nme.1620121010.  Google Scholar

[4]

I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability,, Oxford University Press, (2001).   Google Scholar

[5]

R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations,, Math. Comp., 44 (1985), 283.  doi: 10.1090/S0025-5718-1985-0777265-X.  Google Scholar

[6]

C. Brenner, L. Owens and L.-Y. Sung, A weakly over-penalized symmetric interior penalty method,, Electron. Trans. Numer. Anal., 30 (2008), 107.   Google Scholar

[7]

S. C. Brenner, T. Gudi and L.-Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method,, J. Sci. Comput., 40 (2009), 37.  doi: 10.1007/s10915-009-9278-0.  Google Scholar

[8]

E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations,, Math. Comp., 76 (2007), 1119.  doi: 10.1090/S0025-5718-07-01951-5.  Google Scholar

[9]

P. G. Ciarlet, Basic error estimates for elliptic problems,, in Handbook of Numerical Analysis, (1991), 17.   Google Scholar

[10]

Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods,, J. Comput. Appl. Math., 206 (2007), 843.  doi: 10.1016/j.cam.2006.08.029.  Google Scholar

[11]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monogr. Stud. Math. 24, (1985).   Google Scholar

[12]

Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids,, Math. Comp., 77 (2008), 1253.  doi: 10.1090/S0025-5718-08-02051-6.  Google Scholar

[13]

A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methods in 2D and 3D,, Discrete Continuous Dynam. Systems - B, 5 (2005), 769.  doi: 10.3934/dcdsb.2005.5.769.  Google Scholar

[14]

P. Oswald, On a BPX-preconditioner for $P1$ elements,, Computing, 51 (1993), 125.  doi: 10.1007/BF02243847.  Google Scholar

[15]

P. O. Persson and G. Strang, A simple mesh generator in Matlab,, SIAM Rev., 46 (2004), 329.  doi: 10.1137/S0036144503429121.  Google Scholar

[16]

B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation,, SIAM, (2008).  doi: 10.1137/1.9780898717440.  Google Scholar

[17]

M. F. Wheeler, An elliptic collocation-finite element method with interior penalties,, SIAM J. Numer. Anal., 15 (1978), 152.  doi: 10.1137/0715010.  Google Scholar

[18]

Z. Zhang, Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals,, Int. J. Num. Anal. Model., 1 (2004), 1.   Google Scholar

[19]

Z. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property,, SIAM J. Sci. Comput., 26 (2005), 1192.  doi: 10.1137/S1064827503402837.  Google Scholar

[20]

Z. Zhang and A. Naga, A posteriori error estimates based on polynomial preserving recovery,, SIAM J. Numer. Anal., 42 (2004), 1780.  doi: 10.1137/S0036142903413002.  Google Scholar

[21]

Z. Zhang, Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio,, Numer. Methods Partial Differential Equations, 24 (2008), 960.  doi: 10.1002/num.20300.  Google Scholar

[22]

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis,, Internat. J. Numer. Methods Engrg., 24 (1987), 337.  doi: 10.1002/nme.1620240206.  Google Scholar

[23]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique,, Internat. J. Numer. Methods Engrg., 33 (1992), 1331.  doi: 10.1002/nme.1620330702.  Google Scholar

[24]

J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids,, Math. Comp., 73 (2004), 1139.  doi: 10.1090/S0025-5718-03-01600-4.  Google Scholar

[1]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[2]

JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305

[3]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[4]

Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133

[5]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

[6]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[7]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020350

[8]

Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189

[9]

Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020400

[10]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[11]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[12]

Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949

[13]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006

[14]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[15]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[16]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[17]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[18]

Yanqing Liu, Jiyuan Tao, Huan Zhang, Xianchao Xiu, Lingchen Kong. Fused LASSO penalized least absolute deviation estimator for high dimensional linear regression. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 97-117. doi: 10.3934/naco.2018006

[19]

Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15

[20]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]